Skip to main content
Log in

Construction of a novel heterostructure of Bi2S3/Sb2S3 nanorod with improved sodium storage performances

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, a rod-like heterogeneous Bi2S3/Sb2S3 was systematically engineered through a simple one-step hydrothermal method and subsequently used as an anode active material for sodium-ion batteries (SIBs). The Bi2S3/Sb2S3 heterostructure electrode exhibits a high initial discharge capacity of 972.2 mAh g−1 and maintains a reversible capacity of 369.4 mAh g−1 after 500 cycles at a current density of 1 A g−1. The outstanding electrochemical performance of the Bi2S3/Sb2S3 electrode can be attributed to the synergistic contributions of the high capacity of Sb2S3 and the excellent stability of Bi2S3. Simultaneously, the abundant heterogeneous phase boundaries formed by Bi2S3 and Sb2S3 provide stable reaction interfaces, better structural integrity, and enhanced Na+ reaction kinetics. This work presents an opportunity to develop heterogeneous Bi2S3/Sb2S3 anode materials with excellent properties, holding promise for potential applications in SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Cai R, Zhang W, Zhou J, Yang K, Sun L, Yang L, Ran L, Shao R, Fukuda T, Tan G, Liu H, Wan J, Zhang Q, Dong L (2022) Small Methods 6:2200995

    Article  CAS  Google Scholar 

  2. Zhang H, Zhao H, Khan MA, Zou W, Xu J, Zhang L, Zhang J (2018) J Mater Chem A 6:20564

    Article  CAS  Google Scholar 

  3. Xiao J, Li X, Tang K, Wang D, Long M, Gao H, Chen W, Liu C, Liu H, Wang G (2021) Mater Chem Front 5:3735

    Article  CAS  Google Scholar 

  4. Kim H, Kim H, Ding Z, Lee MH, Lim K, Yoon G, Kang K (2016) Adv Energy Mater 6:1600943

    Article  Google Scholar 

  5. Jiang Z, Zhao Y, Kang W, Xing B, Jiang H, Huang G, Zhang C, Cao Y (2022) J Alloys Compd 925:166631

    Article  CAS  Google Scholar 

  6. Iqbal S, Ma Y, Wei B, Ali M, Zhao T (2023) ACS Appl Nano Mater 6:18247

    Article  CAS  Google Scholar 

  7. Wang X, Feng B, Huang L, Fu Q, Li W, Zhu C, Chen P, Yang C, Ding Y (2021) J Power Sources 520:230826

    Article  Google Scholar 

  8. Yang L, Guo L, Yan D, Wang Y, Shen T, Li D, Pam ME, Shi Y, Yang HY (2023) ACS Nano 17:6754

    Article  CAS  PubMed  Google Scholar 

  9. Wang C, Lu J, Tong H, Wu S, Wang D, Liu B, Cheng L, Lin Z, Hu L, Wang H, Zhang W, Chen Q (2021) Nano Res 14:3545

    Article  CAS  Google Scholar 

  10. Chen L, He X, Chen H, Huang S, Wei M (2021) J Mater Chem A 9:22048

    Article  CAS  Google Scholar 

  11. Huang Y, Wang Z, Jiang Y, Li S, Wang M, Ye Y, Wu F, Xie M, Li L, Chen R (2018) Adv Sci 5:1800613

    Article  Google Scholar 

  12. Fan R, Zhao C, Ma J, Wu J, He T, Dong Y, Dai J, Cai Y (2022) Small 18:2205175

    Article  CAS  Google Scholar 

  13. Morandi P, Flaud V, Tingry S, Cornu D, Holade Y (2020) J Mater Chem A 8:18840

    Article  CAS  Google Scholar 

  14. Wu Q, Chen B, Xie H, Bai X, Liang M, Wu Z, Jin X, He C, Zhao N (2021) Chem Eng J 430:132906

    Article  Google Scholar 

  15. Yang W, Wang H, Liu T, Gao L (2016) Mater Lett 167:102

    Article  CAS  Google Scholar 

  16. Jia R, Li L, Shen GZ, Chen D (2022) Sci China Mater 65:1443

    Article  CAS  Google Scholar 

  17. Liu S, Wang Y, Zhang Y, Xin X, Guo P, Deng D, Ghasemi JB, Wang M, Wang R, Li X (2023) Front Energy 17:654

    Article  Google Scholar 

  18. Zhang S, Lin C, Ye J, Zhao D, Chen Y, Zhang J, Tao J, Li J, Lin Y, Mertens FL, Stijn VK, Oleg and Z. Huang, (2023) Ceram. Int 49:22160

    CAS  Google Scholar 

  19. Nithya C, Vishnupriya S, Dhanushree S (2023) Surf Interfaces 44:103630

    Article  Google Scholar 

  20. Zhou J, Ding Y, Dou Q, Li H, Wang R, Zhang D, Cao Y (2023) Mater Chem Phys 303:127837

    Article  CAS  Google Scholar 

  21. Guo Y, Zhang X, Zhang R, Li A, Zhang J, He H (2023) J Mater Sci: Mater Electron 34:670

    CAS  Google Scholar 

  22. Tang C, Xiao K, Liu J, Cui T, An X, Shan F, Ning J, Yang J, Min Z (2023) Solid State Ionics 403:116398

    Article  CAS  Google Scholar 

  23. Li B, Xi B, Feng Z, Lin Y, Liu J, Feng J, Qian Y, Xiong S (2018) Adv Mater 30:1705788

    Article  Google Scholar 

  24. Wang X, Li X, Li Q, Li H, Xu J, Wang H, Zhao G, Lu L, Lin X, Li H, Li S (2018) Nano-Micro Letters 10:46

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen X, Hong Y, Ge X, Li C, Miao X, Wang P, Zhang Z, Yin L (2020) J Alloys Compd 825:153901

    Article  CAS  Google Scholar 

  26. Deng M, Li S, Hong W, Jiang Y, Xu W, Shuai H, Li H, Wang W, Hou H, Ji X (2019) RSC Adv 9:15210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yin W, Chai W, Wang K, Ye W, Rui Y, Tang B (2019) Electrochim Acta 321

  28. Luo W, Li F, Li Q, Wang X, Yang W, Zhou L, Mai L (2018) ACS Appl Mater Interfaces 10:7201

    Article  CAS  PubMed  Google Scholar 

  29. Qin Y, Zhang Y, Wang J, Zhang J, Zhai Y, Wang H, Li D (2020) ACS Appl Mater Interfaces 12:42902

    Article  CAS  PubMed  Google Scholar 

  30. Chai W, Yin W, Wang K, Ye W, Li X, Tang B, Rui Y (2019) Energy Technol 7:1900668

    Article  CAS  Google Scholar 

  31. Zhang X, Li P, Zang R, Wang S, Zhu Y, Li C, Wang G (2016) Chem Asian J 12:116

    Article  PubMed  Google Scholar 

  32. Lakshmi KP, Deivanayagam R, Shaijumon MM (2021) J Alloys Compd 857:158267

    Article  CAS  Google Scholar 

  33. Li HJ, Li JJ, Chen Z, Wang ZZ, Qu J, Chen YQ, Zhu LJ, Jiang F (2021) ChemElectroChem 8:3512

    Article  CAS  Google Scholar 

  34. Zhao Z, Li K, Li C, Pei X, Zhang S, Liu Z, Du X, Li D (2023) ACS Appl Mater Interfaces 15:4011

    Article  CAS  PubMed  Google Scholar 

  35. Wang G, Su Y, Dai Q, Zhang T, Xie X, Li F, Zhang K (2023) J Electroanal Chem 943:117616

    Article  CAS  Google Scholar 

  36. Liu Y, Wang Y, Zhang X, Xin P, Guo D, Deng JB, Ghasemi M, Wang RW, Li X (2023) Front. Energy 17:654

    Google Scholar 

  37. Lin H, Li M, Yang X, Yu D, Zeng Y, Wang C, Chen G, Du F (2019) Adv Energy Mater 9:1900323

    Article  Google Scholar 

  38. Zhao C, Fan R, Dai J, Dong Y, Wu J, Gao J, Cai Y (2022) Appl Surf Sci 609:155407

    Article  Google Scholar 

  39. Fan R, Zhao C, Ma J, Lei S, Liang G, He T, Zhu G, Cai Y (2022) J Mater Chem A 10:939

    Article  CAS  Google Scholar 

  40. Chandrasekaran N, M. Jeevan Kumar Reddy, I. Insik, K. Soye and G. Sukumaran, (2023) ACS Appl. Nano Mater 6:6121

    Google Scholar 

  41. Ma J, Liu L, He T, Wu J, Dai J, Dong Y, Lei S, Cai Y (2022) J Alloys Compd 927:167088

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by a Bilateral Joint R&D Project of Zhejiang Province (2023C04045).

Author information

Authors and Affiliations

Authors

Contributions

Both Y. Dong and Balaji Murugesan prepared samples. W. Lin and Ch. Wang investigated the performance of samples. J. Dai, W. Li and Q. Ma prepared all figures in the manuscript. X. Yang and Y. Cai wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Xiaogang Yang or Yurong Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16629 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Murugesan, B., Lin, W. et al. Construction of a novel heterostructure of Bi2S3/Sb2S3 nanorod with improved sodium storage performances. Ionics (2024). https://doi.org/10.1007/s11581-024-05550-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05550-0

Keywords

Navigation