Skip to main content
Log in

Au nanoring arrays with tunable morphological features and plasmonic resonances

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Gold nanoring arrays are widely applied in various fields benefitting from their localized surface plasmon resonance (LSPR) properties. A key advantage of gold nanoring arrays is that the dipole resonance peak can be systematically tuned by changing the dimensions of gold nanoring arrays. However, most of the currently reported methods for preparing gold nanoring arrays cannot conveniently control the heights of the nanorings at a low cost. Here we introduce a facile method for preparing gold nanoring arrays with tunable plasmonic resonances using colloidal lithography. The dimensions of the nanorings including diameters, lattice constants, even the heights of the nanorings can be conveniently varied. Fourier transform near-infrared (FT-NIR) absorption spectroscopy was used to obtain the plasmonic resonance spectra of the nanoring arrays. All the prepared gold nanoring arrays exhibited a strong NIR or infrared (IR) plasmonic resonance which can be tuned by varying the nanoring dimensions. This versatile method can also be used to fabricate other types of plasmonic nanostructures, such as gold nanocone arrays. The obtained gold nanoring arrays as well as nanocone arrays may have potential applications in surface-enhanced spectroscopy or plasmonic sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Im, H.; Bantz, K. C.; Lee, S. H.; Johnson, T. W.; Haynes, C. L.; Oh, S. H. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv. Mater. 2013, 25, 2678–2685.

    Article  CAS  Google Scholar 

  2. Caldwell, J. D.; Glembocki, O.; Bezares, F. J.; Bassim, N. D.; Rendell, R. W.; Feygelson, M.; Ukaegbu, M.; Kasica, R.; Shirey, L.; Hosten, C. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 2011, 5, 4046–4055.

    Article  CAS  Google Scholar 

  3. Wang, B.; Zou, Y. T.; Lu, H. Y.; Kong, W. C.; Singh, S. C.; Zhao, C.; Yao, C. N.; Xing, J.; Zheng, X.; Yu, Z. et al. Boosting perovskite photodetector performance in NIR using plasmonic bowtie nanoantenna arrays. Small 2020, 16, 2001417.

    Article  CAS  Google Scholar 

  4. Son, T.; Lee, D.; Lee, C.; Moon, G.; Ha, G. E.; Lee, H.; Kwak, H.; Cheong, E.; Kim, D. Superlocalized three-dimensional live imaging of mitochondrial dynamics in neurons using plasmonic nanohole arrays. ACS Nano 2019, 13, 3063–3074.

    Article  CAS  Google Scholar 

  5. Caprettini, V.; Huang, J. A.; Moia, F.; Jacassi, A.; Gonano, C. A.; Maccaferri, N.; Capozza, R.; Dipalo, M.; De Angelis, F. Enhanced Raman investigation of cell membrane and intracellular compounds by 3D plasmonic nanoelectrode arrays. Adv. Sci. 2018, 5, 1800560.

    Article  Google Scholar 

  6. Park, S. G.; Xiao, X. F.; Min, J.; Mun, C. W.; Jung, H. S.; Giannini, V.; Weissleder, R.; Maier, S. A.; Im, H.; Kim, D. H. Self-assembly of nanoparticle-spiked pillar arrays for plasmonic biosensing. Adv. Funct. Mater. 2019, 29, 1904257.

    Article  CAS  Google Scholar 

  7. Zheng, C. Y.; Palacios, E.; Zhou, W. J.; Hadibrata, W.; Sun, L.; Huang, Z. Y.; Schatz, G. C.; Aydin, K.; Mirkin, C. A. Tunable fluorescence from dye-modified DNA-assembled plasmonic nanocube arrays. Adv. Mater. 2019, 31, 1904448.

    Article  CAS  Google Scholar 

  8. Tseng, M. L.; Yang, J.; Semmlinger, M.; Zhang, C.; Nordlander, P.; Halas, N. J. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response. Nano Lett. 2017, 17, 6034–6039.

    Article  CAS  Google Scholar 

  9. Tran, T. T.; Wang, D. Q.; Xu, Z. Q.; Yang, A. K.; Toth, M.; Odom, T. W.; Aharonovich, I. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett. 2017, 17, 2634–2639.

    Article  CAS  Google Scholar 

  10. Lee, S. W.; Lee, K. S.; Ahn, J.; Lee, J. J.; Kim, M. G.; Shin, Y. B. Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography. ACS Nano 2011, 5, 897–904.

    Article  CAS  Google Scholar 

  11. Flauraud, V.; Regmi, R.; Winkler, P. M.; Alexander, D. T. L.; Rigneault, H.; van Hulst, N. F.; García-Parajo, M. F.; Wenger, J.; Brugger, J. In-plane plasmonic antenna arrays with surface nanogaps for giant fluorescence enhancement. Nano Lett. 2017, 17, 1703–1710.

    Article  CAS  Google Scholar 

  12. Nan, J. J.; Zhu, S. J.; Ye, S. S.; Sun, W. H.; Yue, Y.; Tang, X. D.; Shi, J. W.; Xu, X. S.; Zhang, J. H.; Yang, B. Ultrahigh-sensitivity sandwiched plasmon ruler for label-free clinical diagnosis. Adv. Mater. 2020, 32, 1905927.

    Article  CAS  Google Scholar 

  13. Ye, S. S.; Zhang, X. M.; Chang, L. X.; Wang, T. Q.; Li, Z. B.; Zhang, J. H.; Yang, B. High-performance plasmonic sensors based on two-dimensional Ag nanowell crystals. Adv. Opt. Mater. 2014, 2, 779–787.

    Article  CAS  Google Scholar 

  14. Halpern, A. R.; Corn, R. M. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. ACS Nano 2013, 7, 1755–1762.

    Article  CAS  Google Scholar 

  15. Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Käll, M.; Bryant, G. W.; García de Abajo, F. J. Optical properties of gold nanorings. Phys. Rev. Lett. 2003, 90, 057401.

    Article  CAS  Google Scholar 

  16. Banaee, M. G.; Crozier, K. B. Gold nanorings as substrates for surface-enhanced Raman scattering. Opt. Lett. 2010, 35, 760–762.

    Article  CAS  Google Scholar 

  17. Ye, J.; Shioi, M.; Lodewijks, K.; Lagae, L.; Kawamura, T.; van Dorpe, P. Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering. Appl. Phys. Lett. 2010, 97, 163106.

    Article  Google Scholar 

  18. Teo, S. L.; Lin, V. K.; Marty, R.; Large, N.; Llado, E. A.; Arbouet, A.; Girard, C.; Aizpurua, J.; Tripathy, S.; Mlayah, A. Gold nanoring trimers: A versatile structure for infrared sensing. Opt. Express 2010 18, 22271–22282.

    Article  CAS  Google Scholar 

  19. Tsai, C. Y.; Lu, S. P.; Lin, J. W.; Lee, P. T. High sensitivity plasmonic index sensor using slablike gold nanoring arrays. Appl. Phys. Lett. 2011, 98, 153108.

    Article  Google Scholar 

  20. Toma, M.; Cho, K.; Wood, J. B.; Corn, R. M. Gold nanoring arrays for near infrared plasmonic biosensing. Plasmonics 2014, 9, 765–772.

    Article  CAS  Google Scholar 

  21. Chow, T. H.; Lai, Y. H.; Cui, X. M.; Lu, W. Z.; Zhuo, X. L.; Wang, J. F. Colloidal gold nanorings and their plasmon coupling with gold nanospheres. Small 2019, 15, 1902608.

    Article  Google Scholar 

  22. Cetin, A. E.; Altug, H. Fano Resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 2012, 6, 9989–9995.

    Article  CAS  Google Scholar 

  23. Hao, F.; Sonnefraud, Y.; van Dorpe, P.; Maier, S. A.; Halas, N. J.; Nordlander, P. Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008, 8, 3983–3988.

    Article  CAS  Google Scholar 

  24. Hao, F.; Nordlander, P.; Sonnefraud, Y.; van Dorpe, P.; Maier, S. A. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing. ACS Nano 2009, 3, 643–652.

    Article  CAS  Google Scholar 

  25. Sonnefraud, Y.; Verellen, N.; Sobhani, H.; Vandenbosch, G. A. E.; Moshchalkov, V. V.; van Dorpe, P.; Nordlander, P.; Maier, S. A. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 2010, 4, 1664–1670.

    Article  CAS  Google Scholar 

  26. Lehr, D.; Reinhold, J.; Thiele, I.; Hartung, H.; Dietrich, K.; Menzel, C.; Pertsch, T.; Kley, E. B.; Tunnermann, A. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate. Nano Lett. 2015, 15, 1025–1030.

    Article  CAS  Google Scholar 

  27. Near, R.; Tabor, C.; Duan, J. S.; Pachter, R.; El-Sayed, M. Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. Nano Lett. 2012, 12, 2158–2164.

    Article  CAS  Google Scholar 

  28. Lorente-Crespo, M.; Wang, L.; Ortuño, R.; García-Meca, C.; Ekinci, Y.; Martínez, A. Magnetic hot spots in closely spaced thick gold nanorings. Nano Lett. 2013, 13, 2654–2661.

    Article  CAS  Google Scholar 

  29. Jiang, H.; Sabarinathan, J. Effects of coherent interactions on the sensing characteristics of near-infrared gold nanorings. J. Phys. Chem. C 2010, 114, 15243–15250.

    Article  CAS  Google Scholar 

  30. Yan, N.; Liu, X. J.; Zhu, J. T.; Zhu, Y. T.; Jiang, W. Well-ordered inorganic nanoparticle arrays directed by block copolymer nanosheets. ACS Nano 2019, 13, 6638–6646.

    Article  CAS  Google Scholar 

  31. Wang, T. Q.; Zhang, J. H.; Xue, P. H.; Chen, H. X.; Ye, S. S.; Wang, S. L.; Yu, Y.; Yang, B. Nanotransfer printing of gold disk, ring and crescent arrays and their IR range optical properties. J. Mater. Chem. C 2014, 2, 2333–2340.

    Article  CAS  Google Scholar 

  32. Kasani, S.; Zheng, P.; Wu, N. Q. Tailoring optical properties of a large-area plasmonic gold nanoring array pattern. J. Phys. Chem. C 2018, 122, 13443–13449.

    Article  CAS  Google Scholar 

  33. Kelf, T. A.; Tanaka, Y.; Matsuda, O.; Larsson, E. M.; Sutherland, D. S.; Wright, O. B. Ultrafast vibrations of gold nanorings. Nano Lett. 2011, 11, 3893–3898.

    Article  CAS  Google Scholar 

  34. Larsson, E. M.; Alegret, J.; Käll, M.; Sutherland, D. S. Sensing characteristics of NIR localized surface Plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 2007, 7, 1256–1263.

    Article  CAS  Google Scholar 

  35. Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.

    Article  CAS  Google Scholar 

  36. Zhang, J. H.; Yang, B. Patterning colloidal crystals and nanostructure arrays by soft lithography. Adv. Funct. Mater. 2010, 20, 3411–3424.

    Article  CAS  Google Scholar 

  37. Wang, Y. D.; Zhang, M. Y.; Lai, Y. K.; Chi, L. F. Advanced colloidal lithography: From patterning to applications. Nano Today 2018, 22, 36–61.

    Article  CAS  Google Scholar 

  38. Ke, Y. J.; Ye, S. S.; Hu, P.; Jiang, H.; Wang, S. C.; Yang, B.; Zhang, J. H.; Long, Y. Unpacking the toolbox of two-dimensional nanostructures derived from nanosphere templates. Mater. Horiz. 2019, 6, 1380–1408.

    Article  CAS  Google Scholar 

  39. Ye, S. S.; Wang, H. Y.; Wang, H. L.; Chang, L. X.; Zhang, J. H.; Yang, B. Rationally designed particle-in-aperture hybrid arrays as large-scale, highly reproducible SERS substrates. J. Mater. Chem. C 2017, 5, 11631–11639.

    Article  CAS  Google Scholar 

  40. Chen, H. X.; Mu, S. L.; Fang, L. P.; Shen, H. Z.; Zhang, J. H.; Yang, B. Polymer-assisted fabrication of gold nanoring arrays. Nano Res. 2017, 10, 3346–3357.

    Article  CAS  Google Scholar 

  41. Ye, S. S.; Wang, H. Y.; Su, H. Y.; Chang, L. X.; Wang, S. L.; Zhang, X. M.; Zhang, J. H.; Yang, B. Facile fabrication of homogeneous and gradient plasmonic arrays with tunable optical properties via thermally regulated surface charge density. J. Mater. Chem. C 2017, 5, 3962–3972.

    Article  CAS  Google Scholar 

  42. Li, Z. B.; Nan, J. J.; Zhang, X. M.; Ye, S. S.; Shen, H. Z.; Wang, S. L.; Fang, L. P.; Xue, P. H.; Zhang, J. H.; Yang, B. Modulate the morphology and spectroscopic property of gold nanoparticle arrays by polymer-assisted thermal treatment. J. Phys. Chem. C 2015, 119, 11839–11845.

    Article  CAS  Google Scholar 

  43. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.

    Article  CAS  Google Scholar 

  44. Fusco, Z.; Rahmani, M.; Bo, R. H.; Tran-Phu, T.; Lockrey, M.; Motta, N.; Neshev, D.; Tricoli, A. High-temperature large-scale self-assembly of highly faceted monocrystalline Au metasurfaces. Adv. Funct. Mater. 2019, 29, 1806387.

    Article  Google Scholar 

  45. Tsai, C. Y.; Wu, C. Y.; Chang, K. H.; Lee, P. T. Slab thickness dependence of localized surface plasmon resonance behavior in gold nanorings. Plasmonics 2013, 8, 1011–1016.

    Article  CAS  Google Scholar 

  46. Knoben, W.; Brongersma, S. H.; Crego-Calama, M. Plasmonic Au islands on polymer nanopillars. Nanotechnology 2011, 22, 295303.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21774043, 21975098, and51905526), the Fundamental Research Funds for the Central Universities (JLU) and the Program for JLU Science and Technology Innovation Research Team (No. 2017TD-06), and Jiaxing Science and Technology Project (No. 2020AY10018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxu Chen or Junhu Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, S., Chen, H., Shi, C. et al. Au nanoring arrays with tunable morphological features and plasmonic resonances. Nano Res. 14, 4674–4679 (2021). https://doi.org/10.1007/s12274-021-3402-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3402-3

Keywords

Navigation