Skip to main content
Log in

Polymer-assisted fabrication of gold nanoring arrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this paper, we report a new strategy for the fabrication of gold nanoring arrays via colloidal lithography and polymer-assisted self-assembly of gold nanoparticles (Au NPs). First, multi-segmented polymer nanorod arrays were fabricated via colloidal lithography. They were then used as templates for Au NP adsorption, which resulted in nanoparticles on the poly(4-vinyl pyridine) (P4VP) segments. Continuous gold nanorings were formed after electroless deposition of gold. The diameter, quantity, and spacing of the gold nanorings could be tuned. Three dimensional coaxial gold nanorings with varying diameters could be fabricated on a polymer nanorod by modifying the etch parameters. The nanorings exhibited optical plasmonic resonances at theoretically predicted wavelengths. In addition, the polymer-assisted gold nanorings were released from the substrate to generate a high yield of free-standing nanorings. This simple, versatile method was also used to prepare nanorings from other metals such as palladium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.

    Article  Google Scholar 

  2. Liusman, C.; Li, S. Z.; Chen, X. D.; Wei, W.; Zhang, H.; Schatz, G. C.; Boey, F.; Mirkin, C. A. Free-standing bimetallic nanorings and nanoring arrays made by on-wire lithography. ACS Nano 2010, 4, 7676–7682.

    Article  Google Scholar 

  3. Baek, K. M.; Kim, J. M.; Jeong, J, W.; Lee, S. Y.; Jung, Y. S. Sequentially self-assembled rings-in-mesh nanoplasmonic arrays for surface-enhanced Raman spectroscopy. Chem. Mater. 2015, 27, 5007-5013.

    Article  Google Scholar 

  4. Xue, C.; Mirkin, C. A. pH-switchable silver nanoprism growth pathways. Angew. Chem., Int. Ed. 2007, 46, 2036–2038.

    Google Scholar 

  5. Zhang, J.; Li, S. Z.; Wu, J. S.; Schatz, G. C.; Mirkin, C. A. Plasmon mediated synthesis of silver triangular bipyramids. Angew. Chem., Int. Ed. 2009, 48, 7787–7791.

    Article  Google Scholar 

  6. Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105, 4065–4067.

    Article  Google Scholar 

  7. Wang, H.; Brandl, D. W.; Nordlander, P.; Halas, N. J. Plasmonic nanostructures: Artificial molecules. Acc. Chem. Res. 2007, 40, 53–62.

    Article  Google Scholar 

  8. Lu, X. M.; Au, L.; McLellan, J.; Li, Z.-Y.; Marquez, M.; Xia, Y. N. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 2007, 7, 1764–1769.

    Article  Google Scholar 

  9. Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.

  10. Larsson, E. M.; Alegret, J.; Kä ll, M.; Sutherland, D. S. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 2007, 7, 1256–1263.

    Article  Google Scholar 

  11. Cetin, A. E.; Altug, H. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 2012, 6, 9989–9995.

    Article  Google Scholar 

  12. Clark, A. W.; Glidle, A.; Cumming, D. R. S.; Cooper, J. M. Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors. J. Am. Chem. Soc. 2009, 131, 17615–17619.

    Article  Google Scholar 

  13. Clark, A. W.; Sheridan, A. K.; Glidle, A.; Cumming, D. R. S.; Cooper, J. M. Tuneable visible resonances in crescent shaped nano-split-ring resonators. Appl. Phys. Lett. 2007, 91, 093109.

    Article  Google Scholar 

  14. Gwinner, M. C.; Koroknay, E.; Fu, L. W.; Patoka, P.; Kandulski, W.; Giersig, M.; Giessen, H. Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography. Small 2009, 5, 400–406.

    Article  Google Scholar 

  15. Cataldo, S.; Zhao, J.; Neubrech, F.; Frank, B.; Zhang, C. J.; Braun, P. V.; Giessen, H. Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates. ACS Nano 2012, 6, 979–985.

    Article  Google Scholar 

  16. Babayan, Y.; McMahon, J. M.; Li, S. Z.; Gray, S. K.; Schatz, G. C.; Odom, T. W. Confining standing waves in optical corrals. ACS Nano 2009, 3, 615–620.

    Article  Google Scholar 

  17. Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Kä ll, M.; Bryant, G. W.; García de Abajo, F. J. Optical properties of gold nanorings. Phys. Rev. Lett. 2003, 90, 057401.

    Article  Google Scholar 

  18. Hao, F.; Larsson, E. M.; Ali, T. A.; Sutherland, D. S.; Nordlander, P. Shedding light on dark plasmons in gold nanorings. Chem. Phys. Lett. 2008, 458, 262-266.

    Article  Google Scholar 

  19. Halpern, A. R.; Corn, R. M. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. ACS Nano 2013, 7, 1755–1762.

    Article  Google Scholar 

  20. McLellan, J. M.; Geissler, M.; Xia, Y. N. Edge spreading lithography and its application to the fabrication of mesoscopic gold and silver rings. J. Am. Chem. Soc. 2004, 126, 10830–10831.

    Article  Google Scholar 

  21. Yang, S. M.; Jang, S. G.; Choi, D. G.; Kim, S.; Yu, H. K. Nanomachining by colloidal lithography. Small 2006, 2, 458–475.

    Article  Google Scholar 

  22. Yu, X. D.; Zhang, H. G.; Oliverio, J. K.; Braun, P. V. Template-assisted three-dimensional nanolithography via geometrically irreversible processing. Nano Lett. 2009, 9, 4424–4427.

    Article  Google Scholar 

  23. Banaee, M. G.; Crozier, K. B. Gold nanorings as substrates for surface-enhanced raman scattering. Opt. Lett. 2010, 35, 760–762.

    Article  Google Scholar 

  24. Near, R.; Tabor, C.; Duan, J. S.; Pachter, R.; El-Sayed, M. Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. Nano Lett. 2012, 12, 2158–2164.

    Article  Google Scholar 

  25. Tsai, C. Y.; Lu, S. P.; Lin, J. W.; Lee, P. T. High sensitivity plasmonic index sensor using slablike gold nanoring arrays. Appl. Phys. Lett. 2011, 98, 153108.

    Article  Google Scholar 

  26. Scheeler, S. P.; Lehr, D.; Kley, E. B.; Pacholski, C. Top-up fabrication of gold nanorings. Chem.—Asian J. 2014, 9, 2072–2076.

    Article  Google Scholar 

  27. Behrens, S.; Habicht, W.; Wagner, K.; Unger, E. Assembly of nanoparticle ring structures based on protein templates. Adv. Mater. 2006, 18, 284–289.

    Article  Google Scholar 

  28. Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.

    Article  Google Scholar 

  29. Zhang, J. H.; Yang, B. Patterning colloidal crystals and nanostructure arrays by soft lithography. Adv. Funct. Mater. 2010, 20, 3411–3424.

    Article  Google Scholar 

  30. Ofir, Y.; Samanta, B.; Rotello, V. M. Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1814–1825.

    Article  Google Scholar 

  31. Lee, W.; Lee, S. Y.; Briber, R. M.; Rabin, O. Self-assembled SERS substrates with tunable surface plasmon resonances. Adv. Funct. Mater. 2011, 21, 3424–3429.

    Article  Google Scholar 

  32. Chen, H. X.; Wang, T. Q.; Shen, H. Z.; Liu, W. D.; Wang, S. L.; Liu, K.; Zhang, J. H.; Yang, B. Ag nanoparticle/polymer composite barcode nanorods. Nano Res. 2015, 8, 2871–2880.

    Article  Google Scholar 

  33. Li, X.; Wang, T. Q.; Zhang, J. H.; Zhu, D. F.; Zhang, X.; Ning, Y.; Zhang, H.; Yang, B. Controlled fabrication of fluorescent barcode nanorods. ACS Nano 2010, 4, 4350–4360.

    Article  Google Scholar 

  34. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20-22.

    Article  Google Scholar 

  35. Li, Z. B.; Nan, J. J.; Zhang, X. M.; Ye, S. S.; Shen, H. Z.; Wang, S. L.; Fang, L. P.; Xue, P. H.; Zhang, J. H.; Yang, B. Modulate the morphology and spectroscopic property of gold nanoparticle arrays by polymer-assisted thermal treatment. J. Phys. Chem. C 2015, 119, 11839-11845.

    Article  Google Scholar 

  36. Brown, K. R.; Lyon, L. A.; Fox, A. P.; Reiss, B. D.; Natan, M. J. Hydroxylamine seeding of colloidal Au nanoparticles. 3. Controlled formation of conductive Au films. Chem. Mater. 2000, 12, 314–323.

    Google Scholar 

  37. Zhang, X. M.; Ye, S. S.; Zhang, X.; Wu, L. P. Optical properties of SiO2@M (M = Au, Pd, Pt) core–shell nanoparticles: Material dependence and damping mechanisms. J. Mater. Chem. C 2015, 3, 2282–2290.

    Article  Google Scholar 

  38. Bin, D.; Yang, B. B.; Zhang, K.; Wang, C. Q.; Wang, J.; Zhong, J. T.; Feng, Y.; Guo, J.; Du, Y. K. Design of PdAg hollow nanoflowers through galvanic replacement and their application for ethanol electrooxidation. Chem.—Eur. J. 2016, 22, 16642–16647.

    Article  Google Scholar 

  39. Hao, F.; Nordlander, P.; Sonnefraud, Y.; Van Dorpe, P.; Maier, S. A. Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing. ACS Nano 2009, 3, 643–652.

    Article  Google Scholar 

  40. Zhang, X. M.; Zhang J. H.; Wang, H.; Hao, Y. D.; Zhang, X.; Wang, T. Q.; Wang, Y. N.; Zhao, R.; Zhang, H.; Yang, B. Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: Morphology and refractive index sensitivity. Nanotechnology 2010, 21, 465702.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21474037) and Doctoral Fund of Ministry of Education of China (No. 20130061110019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhu Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Mu, S., Fang, L. et al. Polymer-assisted fabrication of gold nanoring arrays. Nano Res. 10, 3346–3357 (2017). https://doi.org/10.1007/s12274-017-1547-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1547-x

Keywords

Navigation