Skip to main content
Log in

Carbon nanosheets derived from reconstructed lignin for potassium and sodium storage with low voltage hysteresis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lignin is the second most abundant and the only nature polymer rich in aromatic units. Although aromatic-unit-rich precursors often yield soft carbon after carbonization, the side chains in lignin crosslink with the aromatic units and form a rigid three-dimensional (3D) structure which eventually leads to hard carbons. Through a graphene oxide-catalyzed decomposition and repolymerization process, we successfully reconstructed lignin by partially tailoring the side chains. Compared to directly carbonized lignin, the carbonized reconstructed lignin possesses significantly fewer defects, 86% fewer oxygen-functionalities, 82% fewer micropores, and narrower interlayer space. These parameters can be tuned by the amount of catalysts (graphene oxide). When tested as anode for K-ion and Na-ion batteries, the carbonized reconstructed lignin delivers notably higher capacity at low-potential range (especially for Na-storage), shows much-improved performance at high current density, and most importantly, reduces voltage hysteresis between discharge and charge process by more than 50%, which is critical to the energy efficiency of the energy storage system. Our study reveals that the voltage hysteresis in K-storage is much severer than that in Na-storage for all samples. For practical K-ion battery applications, the voltage hysteresis deserves more attention in future electrode materials design and the reconstruct ion strategy introduced in this work provides potential low-cost solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on k-ion batteries. Chem. Rev. 2020, 120, 6358–6466.

    Article  CAS  Google Scholar 

  2. Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

    Article  CAS  Google Scholar 

  3. Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.

    Article  CAS  Google Scholar 

  4. Wang, L. P.; Yu, L. H.; Wang, X.; Srinivasan, M. J. Xu, Z. J. Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 9353–9378.

    Article  CAS  Google Scholar 

  5. Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.

    Article  CAS  Google Scholar 

  6. Liu, Y. Y.; Merinov, B. V.; Goddard III, W. A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl. Acad. Sci. USA 2016, 113, 3735–3739.

    Article  CAS  Google Scholar 

  7. Zhang, W. L.; Ming, J.; Zhao, W. L.; Dong, X. C.; Hedhili, M. N.; Costa, P. M. F. J.; Alshareef, H. N. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 2019, 29, 1903641.

    Article  Google Scholar 

  8. Wu, D.; Yang, B.; Chen, H.; Ruckenstein, E. New findings on an old question: Can defect-free graphene monolayers be superior metal-ion battery anodes? Adv. Sustain. Syst. 2020, 4, 1900152.

    Article  CAS  Google Scholar 

  9. Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042–2048.

    Article  CAS  Google Scholar 

  10. Huang, H. J.; Xu, R.; Feng, Y. Z.; Zeng, S. F.; Jiang, Y.; Wang, H. J.; Luo, W.; Yu, Y. Sodium/potassium-ion batteries: Boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 2020, 32, 1904320.

    Article  CAS  Google Scholar 

  11. Ma, H. L.; Qi, X. J.; Peng, D. Q.; Chen, Y. X.; Wei, D. H.; Ju, Z. C.; Zhuang, Q. C. Novel fabrication of N/S Co-doped hierarchically porous carbon for potassium-ion batteries. ChemistrySelect 2019, 4, 11488–11495.

    Article  CAS  Google Scholar 

  12. Wang, L. L.; Lu, B.; Wang, S. S.; Cheng, W.; Zhao, Y. F.; Zhang, J. J.; Sun, X. L. Ultra-high performance of Li/Na ion batteries using N/O dual dopant porous hollow carbon nanocapsules as an anode. J. Mater. Chem. A 2019, 7, 11117–11126.

    Article  CAS  Google Scholar 

  13. Fan, L. L.; Li, X. F.; Song, X. S.; Hu, N. N.; Xiong, D. B.; Koo, A.; Sun, X. L. Promising dual-doped graphene aerogel/SnS2 nanocrystal building high performance sodium ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 2637–2648.

    Article  CAS  Google Scholar 

  14. Chang, X. Q.; Zhou, X. L.; Ou, X. W.; Lee, C. S.; Zhou, J. W.; Tang, Y. B. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 2019, 9, 1902672.

    Article  CAS  Google Scholar 

  15. Li, Z.; Liu, J.; Jiang, K. R.; Thundat, T. Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 2016, 25, 161–169.

    Article  CAS  Google Scholar 

  16. Li, Z.; Ahadi, K.; Jiang, K. R.; Ahvazi, B.; Li, P.; Anyia, A. O.; Cadien, K.; Thundat, T. Freestanding hierarchical porous carbon film derived from hybrid nanocellulose for high-power supercapacitors. Nano Res. 2017, 10, 1847–1860.

    Article  CAS  Google Scholar 

  17. Liedel, C. Sustainable battery materials from biomass. ChemSusChem 2020, 13, 2110–2141.

    Article  CAS  Google Scholar 

  18. Zhu, J. H.; Roscow, J.; Chandrasekaran, S.; Deng, L. B.; Zhang, P. X.; He, T. S.; Wang, K.; Huang, L. C. Biomass-derived carbons for sodium-ion batteries and sodium-ion capacitors. ChemSusChem 2020, 13, 1275–1295.

    Article  CAS  Google Scholar 

  19. Wang, H. L.; Li, Z.; Tak, J. K.; Holt, C. M. B.; Tan, X. H.; Xu, Z. W.; Amirkhiz, B. S.; Harfield, D.; Anyia, A.; Stephenson, T. et al. Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste. Carbon 2013, 57, 317–328.

    Article  CAS  Google Scholar 

  20. Duval, A.; Lawoko, M. A review on lignin-based polymeric, micro- and nano-structured materials. React. Funct. Polym. 2014, 85, 78–96.

    Article  CAS  Google Scholar 

  21. Jin, J.; Yu, B. J.; Shi, Z. Q.; Wang, C. Y.; Chong, C. B. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J. Power Sources 2014, 272, 800–807.

    Article  CAS  Google Scholar 

  22. Snowdon, M. R.; Mohanty, A. K.; Misra, M. A study of carbonized lignin as an alternative to carbon black. ACS Sustainable Chem. Eng. 2014, 2, 1257–1263.

    Article  CAS  Google Scholar 

  23. Lin, X. Y.; Liu, Y. Z.; Tan, H.; Zhang, B. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage. Carbon 2020, 157, 316–323.

    Article  CAS  Google Scholar 

  24. Zhang, Y.; Zhu, Y. Y.; Jiao, M. L.; Zhang, J.; Chen, M. M.; Wang, C. Y. Synthesis of size-controllable lignin-based nanosperes and its application in electrical double layer capacitors. ChemistrySelect 2020, 5, 8265–8273.

    Article  CAS  Google Scholar 

  25. Saurel, D.; Orayech, B.; Xiao, B. W.; Carriazo, D.; Li, X. L.; Rojo, T. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 2018, 8, 1703268.

    Article  Google Scholar 

  26. Zhu, J. D.; Gao, Z.; Kowalik, M.; Joshi, K.; Ashraf, C. M.; Arefev, M. I.; Schwab, Y.; Bumgardner, C.; Brown, K.; Burden, D. E. et al. Unveiling carbon ring structure formation mechanisms in polyacrylonitrile-derived carbon fibers. ACS Appl. Mater. Interfaces 2019, 11, 42288–42297.

    Article  CAS  Google Scholar 

  27. Patrick, J. W. Porosity in Carbons: Characterization and Applications; Edward Amold: London, 1995.

    Google Scholar 

  28. Yao, X. H.; Ke, Y. J.; Ren, W. H.; Wang, X. P.; Xiong, F. Y.; Yang, W.; Qin, M. S.; Li, Q.; Mai L. Q. Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv. Energy Mater. 2019, 9, 1803260.

    Article  Google Scholar 

  29. Liu, W. S.; Yao, Y. M.; Fu, O. L.; Jiang, S. H.; Fang, Y. C.; Wei, Y.; Lu, X. H. Lignin-derived carbon nanosheets for high-capacitance supercapacitors. RSC Adv. 2017, 7, 48537–48543.

    Article  CAS  Google Scholar 

  30. Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 96–104.

    Article  Google Scholar 

  31. Kubota, K.; Shimadzu, S.; Yabuuchi, N.; Tominaka, S.; Shirashi, S.; Abreu-Speulveda, M.; Manivannan, A.; Gotoh, K.; Fukunishi, M.; Dahbi, M. et al. Structural analysis of sucrose-derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion. Chem. Mater. 2020, 32, 2961–2977.

    Article  CAS  Google Scholar 

  32. Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  CAS  Google Scholar 

  33. Wikberg, H.; Ohra-aho, T.; Pileidis, F.; Titirici, M. M. Structural and morphological changes in Kraft lignin during hydrothermal carbonization. ACS Sustainable Chem. Eng. 2015, 3, 2737–2745.

    Article  CAS  Google Scholar 

  34. Titirici, M. M.; Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 2010, 39, 103–116.

    Article  CAS  Google Scholar 

  35. Krishnan, D.; Raidongia, K.; Shao, J.; Huang, J. X. Graphene oxide assisted hydrothermal carbonization of carbon hydrates. ACS Nano 2014, 8, 449–457.

    Article  CAS  Google Scholar 

  36. Bragg, W. H.; Bragg, W. L. The reflection of X-rays by crystals. Proc. Roy. Soc. A 1913, 88, 428–438.

    CAS  Google Scholar 

  37. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

    Article  CAS  Google Scholar 

  38. Kipling, J. J.; Sherwood, J. N.; Shooter, P. V.; Thompson, N. R. The pore structure and surface area of high-temperature polymer carbons. Carbon 1964, 1, 321–328.

    Article  CAS  Google Scholar 

  39. Share, K.; Cohn, A. P.; Carter, R.; Rogers, B.; Pint, C. L. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 2016, 10, 9738–9744.

    Article  CAS  Google Scholar 

  40. Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 15007–15028.

    Article  CAS  Google Scholar 

  41. Stevens, D. A.; Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803–A811.

  42. Zhang, B.; Ghimbeu, C. M.; Laberty, C.; Vix-Guterl, C.; Tarascon, J. M. Correlation between microstructure and Na storage behavior in hard carbon. Adv. Energy Mater. 2016, 6, 1501588.

    Article  Google Scholar 

  43. Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. L. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015, 15, 5888–5892.

    Article  CAS  Google Scholar 

  44. Stratford, J. M.; Allan, P. K.; Pecher, O.; Chater, P. A.; Grey, C. P. Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. Chem. Commun. 2016, 52, 12430–12433.

    Article  CAS  Google Scholar 

  45. Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013, 7, 11004–11015.

    Article  CAS  Google Scholar 

  46. Dreyer, W.; Jamnik, J.; Guhlke, C.; Huth, R.; Moškon, J.; Gaberšček, M. The thermodynamic origin of hysteresis in insertion batteries. Nat. Mater. 2010, 9, 448–453.

    Article  CAS  Google Scholar 

  47. Cui, Y. P.; Liu, W.; Wang, X.; Li, J. J.; Zhang, Y.; Du, Y. X.; Liu, S.; Wang, H. L.; Feng, W. T.; Chen, M. Bioinspired mineralization under freezing conditions: An approach to fabricate porous carbons with complicated architecture and superior K+ storage performance. ACS Nano 2019, 13, 11582–11592.

    Article  CAS  Google Scholar 

  48. Park, S. M.; Yoo, J. S. Peer reviewed: Electrochemical impedance spectroscopy for better electrochemical measurements: With impedance data, a complete description of an electrochemical system is possible. Anal. Chem. 2003, 75, 455 A–461 A.

    Article  CAS  Google Scholar 

  49. Zabel, H.; Solin, S. A. Graphite Intercalation Compounds I: Structure and Dynamics. Springer: Berlin, 1990.

    Book  Google Scholar 

  50. Jian, Z. L.; Xing, Z. Y.; Bommier, C.; Li, Z. F.; Ji, X. L. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501874.

    Article  Google Scholar 

  51. Okamoto, Y. Density functional theory calculations of lithium adsorption and insertion to defect-free and defective graphene. J. Phys. Chem. C 2016, 120, 14009–14014.

    Article  CAS  Google Scholar 

  52. Lu, J.; Wang, C. L.; Yu, H. L.; Gong, S. P.; Xia, G. L.; Jiang, P.; Xu, P. P.; Yang, K.; Chen, Q. W. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv. Funct. Mater. 2019, 29, 1906126.

    Article  CAS  Google Scholar 

  53. Chen, J. T.; Yang, B. J.; Hou, H. J.; Li, H. X.; Liu, L.; Zhang, L.; Yan, X. B. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 9, 1803894.

    Article  Google Scholar 

  54. Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by Alberta Innovates through the Alberta Bio Future, Lignin Challenge 1.0 and Lignin Pursuit subprograms. The authors would like to thank West Fraser for providing the lignin sample and Dr. Eddie Peace from West Fraser for the discussion and suggestions regarding lignin processing and handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Tan, X., Zhai, S. et al. Carbon nanosheets derived from reconstructed lignin for potassium and sodium storage with low voltage hysteresis. Nano Res. 14, 4664–4673 (2021). https://doi.org/10.1007/s12274-021-3399-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3399-7

Keywords

Navigation