Skip to main content

Advertisement

Log in

Construction of flexible lignin/polyacrylonitrile-based carbon nanofibers for dual-carbon sodium-ion capacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The construction of flexible lignin-based carbon materials is usually impeded by the formation of abounding rigid benzene rings during carbonization. To improve the flexibility, the chemical structure of lignin/polyacrylonitrile (PAN)-based electrospun nanofibers was regulated by tuning cooling process of pre-oxidation. More non-crosslinked branches of lignin with single bonds remained after pre-oxidation, which is beneficial for the formation of flexible lignin/PAN-based carbon nanofibers (CNFs). Assembled as half cells versus sodium metal, the flexible lignin/PAN-based CNFs exhibit a characteristic of hard carbon with a high reversible capacity (207 mA h g−1 at 0.2 A g−1) and a superior cycling life (125% capacity retention after 10,000 cycles at 1.0 A g−1), and the activated lignin/PAN-based CNFs display a large specific surface area of 1390 m2 g−1 and good rate performance (43 mA h g−1 at 2.0 A g−1), which can be used directly as the anode and cathode of sodium-ion capacitors (SICs), respectively. The assembled SIC shows excellent cycling performance (100% capacity retention after 6,000 cycles at 1.0 A g−1) and a good energy density with a good power density (68 W h kg−1 @ 172 W kg−1, 40 W h kg−1 @ 2000 W kg−1). The flexible SIC can supply energy under diverse bending conditions and retain 80% of specific capacity after 1,500 cycles under a 180° bending state. This work provides a new sight to prepare flexible lignin-based carbon materials, which widens the road for sustainable application of lignin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhang H, Xiao D, Li Q et al (2018) Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density. J Energy Chem 27:195. https://doi.org/10.1016/j.jechem.2017.10.034

    Article  Google Scholar 

  2. Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y (2016) Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res 49:2796. https://doi.org/10.1021/acs.accounts.6b00460

    Article  CAS  Google Scholar 

  3. Kang YJ, Chung H, Kim M-S, Kim W (2015) Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors. Appl Surf Sci 355:160. https://doi.org/10.1016/j.apsusc.2015.07.108

    Article  CAS  Google Scholar 

  4. Ferris A, Garbarino S, Guay D, Pech D (2015) 3D RuO2 Microsupercapacitors with Remarkable Areal Energy. Adv Mater 27:6625. https://doi.org/10.1002/adma.201503054

    Article  CAS  Google Scholar 

  5. Jiang S, Shi T, Zhan X et al (2014) High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth. J Power Sources 272:16. https://doi.org/10.1016/j.jpowsour.2014.08.049

    Article  CAS  Google Scholar 

  6. Han P, Han X, Yao J et al (2015) High energy density sodium-ion capacitors through co-intercalation mechanism in diglyme-based electrolyte system. J Power Sources 297:457. https://doi.org/10.1016/j.jpowsour.2015.08.011

    Article  CAS  Google Scholar 

  7. Jiang K, Tan X, Zhai S, Cadien K, Li Z (2021) Carbon nanosheets derived from reconstructed lignin for potassium and sodium storage with low voltage hysteresis. Nano Res. https://doi.org/10.1007/s12274-021-3399-7

    Article  Google Scholar 

  8. Liu T, Zhang L, Cheng B, Yu J (2019) Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Adv Energy Mater. https://doi.org/10.1002/aenm.201803900

    Article  Google Scholar 

  9. Wang Y, Xiao N, Wang Z et al (2018) Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries. Carbon 135:187. https://doi.org/10.1016/j.carbon.2018.04.031

    Article  CAS  Google Scholar 

  10. Subramanyan K, Divya ML, Aravindan V (2021) Dual-carbon Na-ion capacitors: progress and future prospects dagger. J Mater Chem A 9:9431. https://doi.org/10.1039/d0ta12099e

    Article  CAS  Google Scholar 

  11. Zheng H, Cao Q, Zhu M et al (2021) Biomass-based flexible nanoscale carbon fibers: effects of chemical structure on energy storage properties. J Mater Chem A 9:10120. https://doi.org/10.1039/D1TA00317H

    Article  CAS  Google Scholar 

  12. Schlee P, Hosseinaei O, CA O’ Keefe, et al (2020) Hardwood versus softwood Kraft lignin – precursor-product relationships in the manufacture of porous carbon nanofibers for supercapacitors. J Mater Chem A 8:23543. https://doi.org/10.1039/d0ta09093j

    Article  CAS  Google Scholar 

  13. Zhu J, Roscow J, Chandrasekaran S et al (2020) Biomass-derived carbons for sodium-ion batteries and sodium-Ion capacitors. Chemsuschem 13:1275. https://doi.org/10.1002/cssc.201902685

    Article  CAS  Google Scholar 

  14. Rubinstein M, Colby RH (2003) Polymer Physics. Oxford University Press, Oxford

  15. Du Y-F, Sun G-H, Li Y et al (2021) Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity. Carbon 178:243. https://doi.org/10.1016/j.carbon.2021.03.016

    Article  CAS  Google Scholar 

  16. Qu W, Yang J, Sun X, Bai X, Jin H, Zhang M (2021) Towards producing high-quality lignin-based carbon fibers: a review of crucial factors affecting lignin properties and conversion techniques. Int J Biol Macromol 189:768. https://doi.org/10.1016/j.ijbiomac.2021.08.187

    Article  CAS  Google Scholar 

  17. Du B, Chen C, Sun Y et al (2020) Unlocking the response of lignin structure by depolymerization process improved lignin-based carbon nanofibers preparation and mechanical strength. Int J Biol Macromol 156:669. https://doi.org/10.1016/j.ijbiomac.2020.04.105

    Article  CAS  Google Scholar 

  18. Lin X, Liu Y, Tan H, Zhang B (2020) Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage. Carbon 157:316. https://doi.org/10.1016/j.carbon.2019.10.045

    Article  CAS  Google Scholar 

  19. Herou S, Ribadeneyra MC, Madhu R et al (2019) Ordered mesoporous carbons from lignin: a new class of biobased electrodes for supercapacitors. Green Chem 21:550. https://doi.org/10.1039/C8GC03497D

    Article  CAS  Google Scholar 

  20. Cao Q, Zhu M, Chen J, Song Y, Li Y, Zhou J (2020) Novel lignin-cellulose-based carbon nanofibers as high-performance supercapacitors. ACS Appl Mater Interface 12:1210. https://doi.org/10.1021/acsami.9b14727

    Article  CAS  Google Scholar 

  21. Park JH, Rana HH, Lee JY, Park HS (2019) Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. J Mater Chem A 7:16962. https://doi.org/10.1039/c9ta03519b

    Article  CAS  Google Scholar 

  22. Lu Y, Zhao C, Qi X et al (2018) Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing na storage performance. Adv Energy Mater. https://doi.org/10.1002/aenm.201800108

    Article  Google Scholar 

  23. Jiang Z, Dou W, Sun T, Shen Y, Cao D (2015) Effects of chain flexibility on the conformational behavior of a single polymer chain. J Polym Res 22:236. https://doi.org/10.1007/s10965-015-0875-3

    Article  CAS  Google Scholar 

  24. Ronova IA II, Ponomarev, (2019) Design of monomeric units for rigid aromatic polymers. Struct Chem 30:1611. https://doi.org/10.1007/s11224-019-01356-3

    Article  CAS  Google Scholar 

  25. Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed 53:5262. https://doi.org/10.1002/anie.201306129

    Article  CAS  Google Scholar 

  26. Ding R, Wu H, Thunga M, Bowler N, Kessler MR (2016) Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends. Carbon 100:126. https://doi.org/10.1016/j.carbon.2015.12.078

    Article  CAS  Google Scholar 

  27. Dai Z, Shi X, Liu H, Li H, Han Y, Zhou J (2018) High-strength lignin-based carbon fibers via a low-energy method. RSC Adv 8:1218. https://doi.org/10.1039/c7ra10821d

    Article  CAS  Google Scholar 

  28. Svinterikos E, Zuburtikudis I (2016) Carbon nanofibers from renewable bioresources (lignin) and a recycled commodity polymer [poly(ethylene terephthalate)]. J Appl Polym Sci. https://doi.org/10.1002/app.43936

    Article  Google Scholar 

  29. Zheng G, Sano H, Suzuki K, Kobayashi K, Uchiyama Y, Cheng H-M (1999) A TEM study of microstructure of carbon fiber/polycarbosilane-derived SiC composites. Carbon 37:2057. https://doi.org/10.1016/S0008-6223(99)00098-6

    Article  CAS  Google Scholar 

  30. Dou X, Hasa I, Saurel D et al (2019) Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater Today 23:87. https://doi.org/10.1016/j.mattod.2018.12.040

    Article  CAS  Google Scholar 

  31. Ding J, Wang H, Li Z et al (2015) Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ Sci 8:941. https://doi.org/10.1039/C4EE02986K

    Article  CAS  Google Scholar 

  32. Wang X, Zhang W, Chen M, Zhou X (2018) Electrospun enzymatic hydrolysis lignin-based carbon nanofibers as binder-free supercapacitor electrodes with high performance. Polymers (Basel). https://doi.org/10.3390/polym10121306

    Article  Google Scholar 

  33. García-Mateos FJ, Berenguer R, Valero-Romero MJ, Rodríguez-Mirasol J, Cordero T (2018) Phosphorus functionalization for the rapid preparation of highly nanoporous submicron-diameter carbon fibers by electrospinning of lignin solutions. J Mater Chem A 6:1219. https://doi.org/10.1039/c7ta08788h

    Article  CAS  Google Scholar 

  34. Jia H, Sun N, Dirican M et al (2018) Electrospun kraft lignin/cellulose acetate-derived nanocarbon network as an anode for high-performance sodium-ion batteries. ACS Appl Mater Interfaces 10:44368. https://doi.org/10.1021/acsami.8b13033

    Article  CAS  Google Scholar 

  35. Jin J, B-j Yu, Shi Z-q, Wang C-y, Chong C-b (2014) Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J Power Sources 272:800. https://doi.org/10.1016/j.jpowsour.2014.08.119

    Article  CAS  Google Scholar 

  36. Yang C, Zhang M, Kong N, Lan J, Yu Y, Yang X (2019) Self-supported carbon nanofiber films with high-level nitrogen and phosphorus co-doping for advanced lithium-ion and sodium-ion capacitors. ACS Sustainable Chem & Eng 7:9291. https://doi.org/10.1021/acssuschemeng.9b00300

    Article  CAS  Google Scholar 

  37. Alcantara R, Lavela P, Ortiz GF, Tirado JL (2005) Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid State Lett 8:A222. https://doi.org/10.1149/1.1870612

    Article  CAS  Google Scholar 

  38. Gang H-E, Park G-T, Jeon H-B, Kim S-Y, Jeong YG (2021) PAN/lignin and LaMnO3-derived hybrid nanofibers for self-standing high-performance energy storage electrode materials. J Mater Sci. https://doi.org/10.1007/s10853-021-06528-3

    Article  Google Scholar 

  39. Xu X, Zhou J, Nagaraju DH et al (2015) Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices. Adv Funct Mater 25:3193. https://doi.org/10.1002/adfm.201500538

    Article  CAS  Google Scholar 

  40. Zou K, Deng W, Cai P et al (2021) Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: Concepts, pplications, and perspectives. Adv Funct Mater 31:2005581. https://doi.org/10.1002/adfm.202005581

    Article  CAS  Google Scholar 

  41. Choe JH, Kim NR, Lee ME et al (2017) Flexible graphene stacks for sodium-ion storage. ChemElectroChem 4:716. https://doi.org/10.1002/celc.201600620

    Article  CAS  Google Scholar 

  42. Liu Y, Zhang N, Yu C, Jiao L, Chen J (2016) MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett 16:3321. https://doi.org/10.1021/acs.nanolett.6b00942

    Article  CAS  Google Scholar 

  43. Le ZY, Liu F, Nie P et al (2017) Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11:2952. https://doi.org/10.1021/acsnano.6b08332

    Article  CAS  Google Scholar 

  44. Li J, Yang QQ, Hu YX et al (2019) Design of lamellar Mo2C nanosheets assembled by Mo2C nanoparticles as an anode material toward excellent sodium-ion capacitors. ACS Sustainable Chem & Eng 7:18375. https://doi.org/10.1021/acssuschemeng.9b03994

    Article  CAS  Google Scholar 

  45. She LN, Iran Z, Kang LP et al (2018) Nb2O5 nanoparticles anchored on an N-doped graphene hybrid anode for a sodium-ion capacitor with high energy density. ACS Omega 3:15943. https://doi.org/10.1021/acsomega.8b02141

    Article  CAS  Google Scholar 

  46. Bi Z, Zhang Y, Li X et al (2022) Porous fibers of carbon decorated T-Nb2O5 nanocrystal anchored on three-dimensional rGO composites combined with rGO nanosheets as an anode for high-performance flexible sodium-ion capacitors. Electrochim Acta 411:140070. https://doi.org/10.1016/j.electacta.2022.140070

    Article  CAS  Google Scholar 

  47. Zhao Q, Yang D, Zhang C et al (2018) Tailored polyimide-graphene nanocomposite as negative electrode and reduced graphene oxide as positive electrode for flexible hybrid sodium-ion capacitors. ACS Appl Mater Interfaces 10:43730. https://doi.org/10.1021/acsami.8b17171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52172047) and Tsinghua-Foshan Innovation Special Fund (TFISF), China (No. 2020THFS0112).

Author information

Authors and Affiliations

Authors

Contributions

NZ contributed to methodology, validation, formal analysis, investigation, writing—original draft, writing—review and editing, and visualization; Chong Wang contributed to formal analysis; BL contributed to validation; WS contributed to conceptualization and supervision; FK contributed to conceptualization; ZHH contributed to conceptualization, resources, writing—review and editing, supervision, project administration, and funding acquisition. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Zheng-Hong Huang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MPG 6533 KB)

Supplementary file 2 (PDF 277 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Wang, C., Li, B. et al. Construction of flexible lignin/polyacrylonitrile-based carbon nanofibers for dual-carbon sodium-ion capacitors. J Mater Sci 57, 11809–11823 (2022). https://doi.org/10.1007/s10853-022-07371-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07371-w

Navigation