Skip to main content
Log in

Elucidating the electro-catalytic oxidation of hydrazine over carbon nanotube-based transition metal single atom catalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Elucidating the reaction mechanism of hydrazine oxidation reaction (HzOR) over carbon-based catalysts is highly propitious for the rational design of novel electrocatalysts for HzOR. In present work, isolated first-row transition metal atoms have been coordinated with N atoms on the graphite layers of carbon nanotubes via a M-N4-C configuration (MSA/CNT, M=Fe, Co and Ni). The HzOR over the three single atom catalysts follows a predominant 4-electron reaction pathway to emit N2 and a negligible 1-electron pathway to emit trace of NH3, while their electrocatalytic activity for HzOR is dominated by the absorption energy of N2H4 on them. Furthermore, FeSA/CNT reverses the passivation effect on Fe/C and shows superior performance than CoSA/CNT and NiSA/CNT with a recorded high mass activity for HzOR due to the higher electronic charge of Fe over Co and Ni in the M-N4-C configuration and the lowest absorption energy of N2H4 on FeSA/CNT among the three MSA/CNT catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Y.; Setzler, B. P.; Wang, J. H.; Nash, J.; Wang, T.; Xu, B. J.; Yan, Y. S. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule 2019, 3, 2472–2484.

    Article  CAS  Google Scholar 

  2. Serov, A.; Kwak, C. Direct hydrazine fuel cells: A review. Appl. Catal. B Environ. 2010, 98, 1–9.

    Article  CAS  Google Scholar 

  3. Feng, G.; Kuang, Y.; Li, Y. J.; Sun, X. M. Three-dimensional porous superaerophobic nickel nanoflower electrodes for high-performance hydrazine oxidation. Nano Res. 2015, 8, 3365–3371.

    Article  CAS  Google Scholar 

  4. Du, X. Q.; Liu, C.; Du, C.; Cai, P.; Cheng, G. Z.; Luo, W. Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature. Nano Res. 2017, 10, 2856–2865.

    Article  CAS  Google Scholar 

  5. Xia, B. Q.; Chen, K.; Luo, W.; Cheng, G. Z. NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution. Nano Res. 2015, 8, 3472–3479.

    Article  CAS  Google Scholar 

  6. Burshtein, T. Y.; Farber, E. M.; Ojha, K.; Eisenberg, D. Revealing structure-activity links in hydrazine oxidation: Doping and nanostructure in carbide-carbon electrocatalysts. J. Mater. Chem. A 2019, 7, 23854–23861.

    Article  CAS  Google Scholar 

  7. Zhang, T.; Asefa, T. Heteroatom-doped carbon materials for hydrazine oxidation. Adv. Mater. 2019, 31, 1804394.

    Article  Google Scholar 

  8. Cazetta, A. L.; Zhang, T.; Silva, T. L.; Almeida, V. C.; Asefa, T. Bone char-derived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation. Appl. Catal. B Environ. 2018, 225, 30–39.

    Article  CAS  Google Scholar 

  9. Jeong, J.; Choun, M.; Lee, J. Tree-bark-shaped n-doped porous carbon anode for hydrazine fuel cells. Angew. Chem., Int. Ed. 2017, 56, 13513–13516.

    Article  CAS  Google Scholar 

  10. Meng, Y. Y.; Zou, X. X.; Huang, X. X.; Goswami, A.; Liu, Z. W.; Asefa, T. Polypyrrole-derived nitrogen and oxygen Co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation. Adv. Mater. 2014, 26, 6510–6516.

    Article  CAS  Google Scholar 

  11. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  12. Cheng, Y.; Zhao, S. Y.; Li, H. B.; He, S.; Veder, J. P.; Johannessen, B.; Xiao, J. P.; Lu, S. F.; Pan, J.; Chisholm, M. F. et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl. Catal. B Environ. 2019, 243, 294–303.

    Article  CAS  Google Scholar 

  13. Cheng, Y.; Zhao, S. Y.; Johannessen, B.; Veder, J. P.; Saunders, M.; Rowles, M. R.; Cheng, M.; Liu, C.; Chisholm, M. F.; De Marco, R. et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv. Mater. 2018, 30, 1706287.

    Article  Google Scholar 

  14. Wang, Y. C.; Liu, Y.; Liu, W.; Wu, J.; Li, Q.; Feng, Q. G.; Chen, Z. Y.; Xiong, X.; Wang, D. S.; Lei, Y. P. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 2020, 13, 4609–4624.

    Article  CAS  Google Scholar 

  15. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

    Article  CAS  Google Scholar 

  16. Li, H.; Zhang, H. X.; Yan, X. L.; Xu, B. S.; Guo, J. J. Carbon-supported metal single atom catalysts. New Carbon Mater. 2018, 33, 1–11.

    Article  CAS  Google Scholar 

  17. Cheng, Y.; He, S.; Lu, S. F.; Veder, J. P.; Johannessen, B.; Thomsen, L.; Saunders, M.; Becker, T.; De Marco, R.; Li, Q. F. et al. Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells. Adv. Sci. 2019, 6, 1802066.

    Article  Google Scholar 

  18. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  Google Scholar 

  19. Ou, H. H.; Wang, D. S.; Li, Y. D. How to select effective electrocatalysts: Nano or single atom? Nano Sel., in press. DOI: https://doi.org/10.1002/nano.202000239.

  20. Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

    Article  CAS  Google Scholar 

  21. Cui, L. T.; Cui, L. R.; Li, Z. J.; Zhang, J.; Wang, H. N.; Lu, S. F.; Xiang, Y. A copper single-atom catalyst towards efficient and durable oxygen reduction for fuel cells. J. Mater. Chem. A 2019, 7, 16690–16695.

    Article  CAS  Google Scholar 

  22. Wang, J.; Liu, W.; Luo, G.; Li, Z. J.; Zhao, C.; Zhang, H. R.; Zhu, M. Z.; Xu, Q.; Wang, X. Q.; Zhao, C. M. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379.

    Article  CAS  Google Scholar 

  23. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

    Article  CAS  Google Scholar 

  24. Cheng, Y.; He, S.; Veder, J. P.; De Marco, R.; Yang, S. Z.; Jiang, S. P. Atomically dispersed bimetallic feni catalysts as highly efficient bifunctional catalysts for reversible oxygen evolution and oxygen reduction reactions. ChemElectroChem 2019, 6, 3478–3487.

    Article  CAS  Google Scholar 

  25. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  26. Wang, T. Z.; Wang, Q.; Wang, Y. C.; Da, Y. L.; Zhou, W.; Shao, Y.; Li, D. B.; Zhan, S. H.; Yuan, J. Y.; Wang, H. Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine fuel cells. Angew. Chem., Int. Ed. 2019, 58, 13466–13471.

    Article  CAS  Google Scholar 

  27. Ojha, K.; Farber, E. M.; Burshtein, T. Y.; Eisenberg, D. A multi-doped electrocatalyst for efficient hydrazine oxidation. Angew. Chem., Int. Ed. 2018, 57, 17168–17172.

    Article  CAS  Google Scholar 

  28. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of n-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    Article  CAS  Google Scholar 

  29. Li, Z. J.; Wang, D. H.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673–689.

    Article  CAS  Google Scholar 

  30. Asazawa, K.; Sakamoto, T.; Yamaguchi, S.; Yamada, K.; Fujikawa, H.; Tanaka, H.; Oguro, K. Study of anode catalysts and fuel concentration on direct hydrazine alkaline anion-exchange membrane fuel cells. J. Electrochem. Soc. 2009, 156, B509–B512.

    Article  CAS  Google Scholar 

  31. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

    Article  CAS  Google Scholar 

  32. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  33. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  34. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  35. Cui, L. T.; Li, Z. J.; Wang, H. N.; Cui, L. R.; Zhang, J.; Lu, S. F.; Xiang, Y. Atomically dispersed Cu-N-C as a promising support for low-Pt loading cathode catalysts of fuel cells. ACS Appl. Energy Mater. 2020, 3, 3807–3814.

    Article  CAS  Google Scholar 

  36. Guo, M.; Wang, H. N.; Cui, L. T.; Zhang, J.; Xiang, Y.; Lu, S. F. Nickel promoted palladium nanoparticles for electrocatalysis of carbohydrazide oxidation reaction. Small 2019, 15, 1900929.

    Article  Google Scholar 

  37. Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

    Article  CAS  Google Scholar 

  38. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  39. Peng, H. Q.; Li, Q. H.; Hu, M. X.; Xiao, L.; Lu, J. T.; Zhuang, L. Alkaline polymer electrolyte fuel cells stably working at 80 °C. J. Power Sources 2018, 390, 165–167.

    Article  CAS  Google Scholar 

  40. Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-020-3244-4.

  41. Fu, Y.; Yu, H. Y.; Jiang, C.; Zhang, T. H.; Zhan, R.; Li, X. W.; Li, J. F.; Tian, J. H.; Yang, R. Z. Nico alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst. Adv. Funct. Mater. 2018, 28, 1705094.

    Article  Google Scholar 

  42. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  43. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  44. Asazawa, K.; Yamada, K.; Tanaka, H.; Taniguchi, M.; Oguro, K. Electrochemical oxidation of hydrazine and its derivatives on the surface of metal electrodes in alkaline media. J. Power Sources 2009, 191, 362–365.

    Article  CAS  Google Scholar 

  45. Jeon, T. Y.; Watanabe, M.; Miyatake, K. Carbon segregation-induced highly metallic Ni nanoparticles for electrocatalytic oxidation of hydrazine in alkaline media. ACS Appl. Mater. Interfaces 2014, 6, 18445–18449.

    Article  CAS  Google Scholar 

  46. Fragal, V. H.; Fragal, E. H.; Zhang, T.; Huang, X. X.; Cellet, T. S. P.; Pereira, G. M.; Jitianu, A.; Rubira, A. F.; Silva, R.; Asefa, T. Deriving efficient porous heteroatom-doped carbon electrocatalysts for hydrazine oxidation from transition metal ions-coordinated casein. Adv. Funct. Mater. 2019, 29, 1808486.

    Article  Google Scholar 

  47. Liu, C. B.; Zhang, H.; Tang, Y. H.; Luo, S. L. Controllable growth of graphene/Cu composite and its nanoarchitecture-dependent electrocatalytic activity to hydrazine oxidation. J. Mater. Chem. A 2014, 2, 4580–4587.

    Article  CAS  Google Scholar 

  48. Sanabria-Chinchilla, J.; Asazawa, K.; Sakamoto, T.; Yamada, K.; Tanaka, H.; Strasser, P. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways. J. Am. Chem. Soc. 2011, 133, 5425–5431.

    Article  CAS  Google Scholar 

  49. Wang, H.; Ma, Y. J.; Wang, R. F.; Key, J.; Linkov, V.; Ji, S. Liquid-liquid interface-mediated room-temperature synthesis of amorphous NiCo pompoms from ultrathin nanosheets with high catalytic activity for hydrazine oxidation. Chem. Commun. 2015, 51, 3570–3573.

    Article  CAS  Google Scholar 

  50. Wen, X. P.; Dai, H. B.; Wu, L. S.; Wang, P. Electroless plating of Ni-B film as a binder-free highly efficient electrocatalyst for hydrazine oxidation. Appl. Surf. Sci. 2017, 409, 132–139.

    Article  CAS  Google Scholar 

  51. Wang, Y. H.; Liu, X. Y.; Tan, T.; Ren, Z. L.; Lei, Z. Q.; Wang, W. A phosphatized pseudo-core-shell Fe@Cu-P/C electrocatalyst for efficient hydrazine oxidation reaction. J. Alloys Compd. 2019, 787, 104–111.

    Article  CAS  Google Scholar 

  52. Wen, H.; Gan, L. Y.; Dai, H. B.; Wen, X. P.; Wu, L. S.; Wu, H.; Wang, P. In situ grown Ni phosphide nanowire array on Ni foam as a high-performance catalyst for hydrazine electrooxidation. Appl. Catal. B Environ. 2019, 241, 292–298.

    Article  CAS  Google Scholar 

  53. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

    Article  CAS  Google Scholar 

  54. Yin, W. X.; Li, Z. P.; Zhu, J. K.; Qin, H. Y. Effects of NaOH addition on performance of the direct hydrazine fuel cell. J. Power Sources 2008, 182, 520–523.

    Article  CAS  Google Scholar 

  55. Yamada, K.; Yasuda, K.; Tanaka, H.; Miyazaki, Y.; Kobayashi, T. Effect of anode electrocatalyst for direct hydrazine fuel cell using proton exchange membrane. J. Power Sources 2003, 122, 132–137.

    Article  CAS  Google Scholar 

  56. Kodera, T.; Honda, M.; Kita, H. Electrochemical behaviour of hydrazine on platinum in alkaline solution. Electrochim. Acta. 1985, 30, 669–675.

    Article  CAS  Google Scholar 

  57. Yamada, K.; Asazawa, K.; Yasuda, K.; Ioroi, T.; Tanaka, H.; Miyazaki, Y.; Kobayashi, T. Investigation of PEM type direct hydrazine fuel cell. J. Power Sources 2003, 115, 236–242.

    Article  CAS  Google Scholar 

  58. Agusta, M. K.; Diño, W. A.; David, M.; Nakanishi, H.; Kasai, H. Theoretical study of hydrazine adsorption on Pt(111): Anti or cis? Surf. Sci. 2011, 605, 1347–1353.

    Article  CAS  Google Scholar 

  59. Feng, G.; An, L.; Li, B.; Zuo, Y. X.; Song, J.; Ning, F. H.; Jiang, N.; Cheng, X. P.; Zhang, Y. F.; Xia, D. G. Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation. Nat. Commun. 2019, 10, 4514.

    Article  CAS  Google Scholar 

  60. Zhang, J.; Cao, X. Y.; Guo, M.; Wang, H. N.; Saunders, M.; Xiang, Y.; Jiang, S. P.; Lu, S. F. Unique Ni crystalline core/Ni phosphide amorphous shell heterostructured electrocatalyst for hydrazine oxidation reaction of fuel cells. ACS Appl. Mater. Interfaces 2019, 11, 19048–19055.

    Article  CAS  Google Scholar 

  61. Rosca, V.; Koper, M. T. M. Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions. Electrochim. Acta. 2008, 53, 5199–5205.

    Article  CAS  Google Scholar 

  62. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

    Article  CAS  Google Scholar 

  63. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  64. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2170006.

    Article  Google Scholar 

  65. Martinez, U.; Rojas-Carbonell, S.; Halevi, B.; Artyushkova, K.; Kiefer, B.; Sakamoto, T.; Asazawa, K.; Tanaka, H.; Datye, A.; Atanassov, P. Ni-La electrocatalysts for direct hydrazine alkaline anion-exchange membrane fuel cells. J. Electrochem. Soc. 2014, 161, H3106–H3112.

    Article  Google Scholar 

  66. Lu, Z. Y.; Sun, M.; Xu, T. H.; Li, Y. J.; Xu, W. W.; Chang, Z.; Ding, Y.; Sun, X. M.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361–2366.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Project supported by Beijing Natural Science Foundation (No. 2194076), the National Natural Science Foundation of China (Nos. 21908001, 21872003, and U19A2017), and the Fundamental Research Funds for the Central Universities. XAS measurements were performed on the soft X-ray and XAS beamlines of the Australian Synchrotron, Victoria, Australia. The electron microscopy carried out at ORNL was supported by the U.S. Department of Energy, Office of Basic Energy Sciences and through a user proposal supported by ORNL’s Center for Nanophase Materials Sciences. This research was also supported by the high performance computing (HPC) resources at Beihang University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Cheng or Haining Wang.

Electronic Supplementary Material

12274_2021_3397_MOESM1_ESM.pdf

Elucidating the electro-catalytic oxidation of hydrazine over carbon nanotube-based transition metal single atom catalysts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, Y., Yang, C. et al. Elucidating the electro-catalytic oxidation of hydrazine over carbon nanotube-based transition metal single atom catalysts. Nano Res. 14, 4650–4657 (2021). https://doi.org/10.1007/s12274-021-3397-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3397-9

Keywords

Navigation