Skip to main content
Log in

Computational study of transition metal single-atom catalysts supported on nitrogenated carbon nanotubes for electrocatalytic nitrogen reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing efficient and stable catalysts for the electrocatalytic N2 reduction reaction (NRR) shows promise in nitrogen fixation. Here, we proposed active and stable single-atom catalysts (SACs) toward NRR, where transition metals are anchored on nitrogenated carbon nanotubes (NCNTs). Among the screened nine common transition metals (Ti, V, Cr, Mn, Fe, Mo, Ru, Rh, and Ag) on (4, 4) NCNTs, we found Mo-NCNT possesses the most excellent NRR catalytic activity and selectivity with a low overpotential of 0.29 V. Then, the NRR performance of Mo-NCNT was further engineered by controlling the nanotube diameter, where the lowest overpotential is 0.18 V at a diameter of 9.6 Å. In addition, we found a linear scaling relation between *NNH and *NH2 on the studied catalysts with the exception of (2, 2) and (3, 3) Mo-NCNTs, owing to their extremely unstable structures. We attribute the outstanding NRR performance of Mo-NCNT to the moderate adsorption of N2 due to the slightly low d-band center of Mo, and the charge donating and accepting capacity of NCNTs. This work has provided a deeper insight into designing high-efficiency and stable NRR SACs supported by NCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gruber, N.; Galloway, J. N. An earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296.

    Article  CAS  Google Scholar 

  2. Licht, S.; Cui, B. C.; Wang, B. H.; Li, F. F.; Lau, J.; Liu, S. Z. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–640.

    Article  CAS  Google Scholar 

  3. Rosca, V.; Duca, M.; De Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

    Article  CAS  Google Scholar 

  4. Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; Go, Y. B.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M.; Yaghi, O. M.; Materials Design and Discovery Group. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523–527.

    Article  CAS  Google Scholar 

  5. Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.

    Article  CAS  Google Scholar 

  6. Deng, J.; Iñiguez, J. A.; Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018, 2, 846–856.

    Article  CAS  Google Scholar 

  7. Xie, K.; Wang, F. T.; Wei, F. F.; Zhao, J.; Lin, S. Revealing the origin of nitrogen electroreduction activity of molybdenum disulfide supported iron atoms. J. Phys. Chem. C 2022, 126, 5180–5188.

    Article  CAS  Google Scholar 

  8. Qi, J. M.; Zhou, S. L.; Xie, K.; Lin, S. Catalytic role of assembled Ce Lewis acid sites over ceria for electrocatalytic conversion of dinitrogen to ammonia. J. Energy Chem. 2021, 60, 249–258.

    Article  CAS  Google Scholar 

  9. Lin, L. H.; Gao, L. Y.; Xie, K.; Jiang, R.; Lin, S. Ru-polyoxometalate as a single-atom electrocatalyst for N2 reduction to NH3 with high selectivity at applied voltage: A perspective from DFT studies. Phys. Chem. Chem. Phys. 2020, 22, 7234–7240.

    Article  CAS  Google Scholar 

  10. Gao, L. Y.; Wang, F. T.; Yu, M. A.; Wei, F. F.; Qi, J. M.; Lin, S.; Xie, D. Q. A novel phosphotungstic acid-supported single metal atom catalyst with high activity and selectivity for the synthesis of NH3 from electrochemical N2 reduction: A DFT prediction. J. Mater. Chem. A 2019, 7, 19838–19845.

    Article  CAS  Google Scholar 

  11. Qi, J. M.; Gao, L. Y.; Wei, F. F.; Wan, Q.; Lin, S. Design of a high-performance electrocatalyst for N2 conversion to NH3 by trapping single metal atoms on stepped CeO2. ACS Appl. Mater. Interfaces 2019, 11, 47525–47534.

    Article  CAS  Google Scholar 

  12. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  13. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res., in press, DOI: 10.1007/s12274-022-4429-9.

  14. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  15. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  16. Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

    Article  CAS  Google Scholar 

  17. Zhang, T. J.; Walsh, A. G.; Yu, J. H.; Zhang, P. Single-atom alloy catalysts: Structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 2021, 50, 569–588.

    Article  CAS  Google Scholar 

  18. Singh, B.; Sharma, V.; Gaikwad, R. P.; Fornasiero, P.; Zbořil, R.; Gawande, M. B. Single-atom catalysts: A sustainable pathway for the advanced catalytic applications. Small 2021, 17, 2006473.

    Article  CAS  Google Scholar 

  19. Yuan, F.; Sun, R. S.; Fu, L.; Zhao, G. Z. Defect engineering for high-selection-performance of N2 activation over CeO2(111) surface. Chin. Chem. Lett. 2022, 33, 2188–2194.

    Article  CAS  Google Scholar 

  20. Shang, Y. N.; Duan, X. G.; Wang, S. B.; Yue, Q. Y.; Gao, B. Y.; Xu, X. Carbon-based single atom catalyst: Synthesis, characterization, DFT calculations. Chin. Chem. Lett. 2022, 33, 663–673.

    Article  CAS  Google Scholar 

  21. Bian, W. Y.; Shen, X. L.; Tan, H.; Fan, X.; Liu, Y. X.; Lin, H. P.; Li, Y. Y. The triggering of catalysis via structural engineering at atomic level: Direct propane dehydrogenation on Fe−N3P−C. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2022.03.012.

  22. Yan, Y. B.; Miao, J. W.; Yang, Z. H.; Xiao, F. X.; Yang, H. B.; Liu, B.; Yang, Y. H. Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44, 3295–3346.

    Article  CAS  Google Scholar 

  23. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  CAS  Google Scholar 

  24. Yu, D. S.; Zhang, Q.; Dai, L. M. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 2010, 132, 15127–15129.

    Article  CAS  Google Scholar 

  25. Li, Y. H.; Hung, T. H.; Chen, C. W. A first-principles study of nitrogen- and boron-assisted platinum adsorption on carbon nanotubes. Carbon 2009, 47, 850–855.

    Article  CAS  Google Scholar 

  26. García-García, F. R.; Álvarez-Rodríguez, J.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A. The use of carbon nanotubes with and without nitrogen doping as support for ruthenium catalysts in the ammonia decomposition reaction. Carbon 2010, 48, 267–276.

    Article  Google Scholar 

  27. Lee, D. H.; Lee, W. J.; Lee, W. J.; Kim, S. O.; Kim, Y. H. Theory, synthesis, and oxygen reduction catalysis of fe-porphyrin-like carbon nanotube. Phys. Rev. Lett. 2011, 106, 175502.

    Article  Google Scholar 

  28. Aoyama, S.; Kaiwa, J.; Chantngarm, P.; Tanibayashi, S.; Saito, H.; Hasegawa, M.; Nishidate, K. Oxygen reduction reaction of FeN4 center embedded in graphene and carbon nanotube: Density functional calculations. AIP Adv. 2018, 8, 115113.

    Article  Google Scholar 

  29. Omidvar, A. Dissociation of O2 molecule on Fe/Nx clusters embedded in C60 fullerene, carbon nanotube and graphene. Synth. Met. 2017, 234, 38–46.

    Article  CAS  Google Scholar 

  30. Yang, L.; Wu, Y. X.; Wu, F.; Zhao, Y.; Zhuo, Z. W.; Wang, Z. W.; Li, X. Y.; Luo, Y.; Jiang, J. Emerging linear activity trend in the oxygen evolution reaction with dual-active-sites mechanism. J. Mater. Chem. A 2020, 8, 20946–20952.

    Article  CAS  Google Scholar 

  31. Niu, J. T.; Qi, W. J.; Li, C.; Mao, M.; Zhang, Z. G.; Chen, Y.; Li, W. L.; Ge, S. S. Mechanisms of oxygen reduction reaction on B doped FeN4-G and FeN4-CNT catalysts for proton-exchange membrane fuel cells. Inter. J. Energy Res. 2021, 45, 8524–8535.

    Article  CAS  Google Scholar 

  32. Sun, H.; Wang, M. F.; Du, X. C.; Jiao, Y.; Liu, S. S.; Qian, T.; Yan, Y. C.; Liu, C.; Liao, M.; Zhang, Q. H. et al. Modulating the d-band center of boron doped single-atom sites to boost the oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 20952–20957.

    Article  CAS  Google Scholar 

  33. Ma, Y. Y.; Yang, T.; Zou, H. Y.; Zang, W. J.; Kou, Z. K.; Mao, L.; Feng, Y. P.; Shen, L.; Pennycook, S. J.; Duan, L. L. et al. Synergizing Mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv. Mater. 2020, 32, 2002177.

    Article  CAS  Google Scholar 

  34. Wang, Y.; Cui, X. Q.; Zhao, J. X.; Jia, G. R.; Gu, L.; Zhang, Q. H.; Meng, L. K.; Shi, Z.; Zheng, L. R.; Wang, C. Y. et al. Rational design of Fe−N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution. ACS Catal. 2019, 9, 336–344.

    Article  CAS  Google Scholar 

  35. Ou, P. F.; Zhou, X.; Meng, F. C.; Chen, C.; Chen, Y. Q.; Song, J. Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation. Nanoscale 2019, 11, 13600–13611.

    Article  CAS  Google Scholar 

  36. Lv, X. S.; Wei, W.; Huang, B. B.; Dai, Y.; Frauenheim, T. High-throughput screening of synergistic transition metal dual-atom catalysts for efficient nitrogen fixation. Nano Lett. 2021, 21, 1871–1878.

    Article  CAS  Google Scholar 

  37. Li, X.; Zhou, Q. Y.; Wang, S. F.; Li, Y.; Liu, Y. F.; Gao, Q.; Wu, Q. Tuning the coordination environment to effect the electrocatalytic behavior of a single-atom catalyst toward the nitrogen reduction reaction. J. Phys. Chem. C 2021, 125, 11963–11974.

    Article  CAS  Google Scholar 

  38. Feng, Z.; Tang, Y. N.; Chen, W. G.; Li, Y.; Li, R. Y.; Ma, Y. Q.; Dai, X. Q. Graphdiyne coordinated transition metals as single-atom catalysts for nitrogen fixation. Phys. Chem. Chem. Phys. 2020, 22, 9216–9224.

    Article  CAS  Google Scholar 

  39. Chen, Z. W.; Yan, J. M.; Jiang, Q. Single or double: Which is the altar of atomic catalysts for nitrogen reduction reaction? Small Methods 2019, 3, 1800291.

    Article  Google Scholar 

  40. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

    Article  CAS  Google Scholar 

  41. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  42. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  43. Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

    Article  Google Scholar 

  44. Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 2019, 151, 234101.

    Article  Google Scholar 

  45. Dronskowski, R.; Bloechl, P. E. Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617–8624.

    Article  CAS  Google Scholar 

  46. Bultinck, P. The hirshfeld-I method: Atoms in molecules and chemical bonding perspective. Acta Cryst. 2011, A67, C85–C86.

    Article  Google Scholar 

  47. Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.

    Article  Google Scholar 

  48. Zafari, M.; Kumar, D.; Umer, M.; Kim, K. S. Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts. J. Mater. Chem. A 2020, 8, 5209–5216.

    Article  CAS  Google Scholar 

  49. Zheng, S. S.; Li, S. M.; Mei, Z. W.; Hu, Z. X.; Chu, M. H.; Liu, J. H.; Chen, X.; Pan, F. Electrochemical nitrogen reduction reaction performance of single-boron catalysts tuned by MXene substrates. J. Phys. Chem. Lett. 2019, 10, 6984–6989.

    Article  CAS  Google Scholar 

  50. Zhao, W. H.; Zhang, L. F.; Luo, Q. Q.; Hu, Z. P.; Zhang, W. H.; Smith, S.; Yang, J. L. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 2019, 9, 3419–3425.

    Article  CAS  Google Scholar 

  51. Ling, C. Y.; Ouyang, Y. X.; Li, Q.; Bai, X. W.; Mao, X.; Du, A. J.; Wang, J. L. A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation. Small Methods 2019, 3, 1800376.

    Article  Google Scholar 

  52. Li, M. Y.; Cui, Y.; Zhang, X. L.; Luo, Y.; Dai, Y. X.; Huang, Y. C. Screening a suitable Mo form supported on graphdiyne for effectively electrocatalytic N2 reduction reaction: From atomic catalyst to cluster catalyst. J. Phys. Chem. Lett. 2020, 11, 8128–8137.

    Article  CAS  Google Scholar 

  53. Guo, X. Y.; Gu, J. X.; Lin, S. R.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 2020, 142, 5709–5721.

    Article  CAS  Google Scholar 

  54. Xu, Z. W.; Song, R. F.; Wang, M. Y.; Zhang, X. Z.; Liu, G. W.; Qiao, G. J. Single atom-doped arsenene as electrocatalyst for reducing nitrogen to ammonia: A DFT study. Phys. Chem. Chem. Phys. 2020, 22, 26223–26230.

    Article  CAS  Google Scholar 

  55. Li, X. H.; Ren, X.; Liu, X. J.; Zhao, J. X.; Sun, X.; Zhang, Y.; Kuang, X.; Yan, T.; Wei, Q.; Wu, D. A MoS2 nanosheet-reduced graphene oxide hybrid: An efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions. J. Mater. Chem. A 2019, 7, 2524–2528.

    Article  CAS  Google Scholar 

  56. Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. B.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.

    Article  Google Scholar 

  57. Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 8, 2180–2186.

    Article  CAS  Google Scholar 

  58. Lin, I. H.; Lu, Y. H.; Chen, H. T. Nitrogen-doped carbon nanotube as a potential metal-free catalyst for CO oxidation. Phys. Chem. Chem. Phys. 2016, 18, 12093–12100.

    Article  CAS  Google Scholar 

  59. Hu, X. B.; Wu, Y. T.; Zhang, Z. B. CO oxidation on metal-free nitrogen-doped carbon nanotubes and the related structure-reactivity relationships. J. Mater. Chem. 2012, 22, 15198–15205.

    Article  CAS  Google Scholar 

  60. Spatzal, T.; Aksoyoglu, M.; Zhang, L. M.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 2011, 334, 940.

    Article  CAS  Google Scholar 

  61. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  CAS  Google Scholar 

  62. Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

    Article  CAS  Google Scholar 

  63. Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 131, 2343–2347.

    Article  Google Scholar 

  64. Chen, L.; Wang, Q.; Gong, H. R.; Xue, M. S. Single Mo atom supported on defective BC2N monolayers as promising electrochemical catalysts for nitrogen reduction reaction. Appl. Surf. Sci. 2021, 546, 149131.

    Article  CAS  Google Scholar 

  65. Zheng, M.; Xu, H. B.; Li, Y.; Ding, K. N.; Zhang, Y. F.; Sun, C. G.; Chen, W. K.; Lin, W. Electrocatalytic nitrogen reduction by transition metal single-atom catalysts on polymeric carbon nitride. J. Phys. Chem. C 2021, 125, 13880–13888.

    Article  CAS  Google Scholar 

  66. Evans, M. G.; Warhurst, E. The activation energy of diene association reactions. Trans. Faraday Soc. 1938, 34, 614–624.

    Article  CAS  Google Scholar 

  67. Bronsted, J. N. Acid and basic catalysis. Chem. Rev. 1928, 5, 231–338.

    Article  CAS  Google Scholar 

  68. Hammer, B.; Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220.

    Article  CAS  Google Scholar 

  69. Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A:Chem. 1997, 115, 421–429.

    Article  CAS  Google Scholar 

  70. Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71–129.

    CAS  Google Scholar 

  71. Vojvodic, A.; Nørskov, J. K.; Abild-Pedersen, F. Electronic structure effects in transition metal surface chemistry. Top. Catal. 2014, 57, 25–32.

    Article  CAS  Google Scholar 

  72. Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 22103059). Y. S. acknowledges the “Young Talent Support Plan” of Xi’an Jiaotong University and the Open Funds of State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University No. 202018). Supercomputing facilities were provided by Hefei Advanced Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiantian Wu or Yaqiong Su.

Electronic Supplementary Material

12274_2022_4803_MOESM1_ESM.pdf

Computational study of transition metal single-atom catalysts supported on nitrogenated carbon nanotubes for electrocatalytic nitrogen reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Li, Y., Zhao, W. et al. Computational study of transition metal single-atom catalysts supported on nitrogenated carbon nanotubes for electrocatalytic nitrogen reduction. Nano Res. 16, 325–333 (2023). https://doi.org/10.1007/s12274-022-4803-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4803-7

Keywords

Navigation