Skip to main content
Log in

Carbon nanotube supported bifunctional electrocatalysts containing iron-nitrogen-carbon active sites for zinc-air batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bifunctional electrocatalysts with high activity toward both oxygen reduction and evolution reaction are highly desirable for rechargeable Zn-air batteries. Herein, a kind of carbon nanotube (CNT) supported single-site Fe-N-C catalyst was fabricated via pyrolyzing in-situ grown Fe-containing zeolitic imidazolate frameworks on CNTs. CNTs not only serve as the physical supports of the Fe-N-C active sites but also provide a conductive network to facilitate the fast electron and ion transfer. The as-synthesized catalysts exhibit a half-wave potential of 0.865 V for oxygen reduction reaction and a low overpotential of 0.442 V at 10 mA·cm−2 for oxygen evolution, which is 310 mV smaller than that of Fe-N-C without CNTs. The rechargeable Zn-air batteries fabricated with such hybrid catalysts display a high peak power density of 182 mW·cm−2 and an excellent cycling stability of over 1,000 h at 10 mA·cm−2, which outperforms commercial Pt-C and most of the reported catalysts. This facile strategy of combining single-site Metal-N-C with CNTs network is effective for preparing highly active bifunctional electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  2. Peng, Q. Y.; Li, Y. B.; He, X. D.; Gui, X. C.; Shang, Y. Y.; Wang, C. H.; Wang, C.; Zhao, W. Q.; Du, S. Y.; Shi, E. Z. et al. Graphene nanoribbon aerogels unzipped from carbon nanotube sponges. Adv. Mater. 2014, 26, 3241–3247.

    Article  CAS  Google Scholar 

  3. Liu, Q. F.; Pan, Z. F.; Wang, E. D.; An, L.; Sun, G. Q. Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Mater. 2020, 27, 478–505.

    Article  Google Scholar 

  4. Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

    Article  CAS  Google Scholar 

  5. Fu, J.; Liang, R. L.; Liu, G. H.; Yu, A. P.; Bai, Z. Y.; Yang, L.; Chen, Z. W. Recent progress in electrically rechargeable zinc-air batteries. Adv. Mater. 2019, 31, 1805230.

    Article  Google Scholar 

  6. Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.

    Article  Google Scholar 

  7. Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

    Article  CAS  Google Scholar 

  8. Zeng, X. H.; Hao, J. N.; Wang, Z. J.; Mao, J. F.; Guo, Z. P. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 2019, 20, 410–437.

    Article  Google Scholar 

  9. Zhang, C. L.; Hwang, S. Y.; Trout, A.; Peng, Z. M. Solid-state chemistry-enabled scalable production of octahedral Pt-Ni alloy electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2014, 136, 7805–7808.

    Article  CAS  Google Scholar 

  10. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  CAS  Google Scholar 

  11. Meier, J. C.; Katsounaros, I.; Galeano, C.; Bongard, H. J.; Topalov, A. A.; Kostka, A.; Karschin, A.; Schüth, F.; Mayrhofer, K. J. J. Stability investigations of electrocatalysts on the nanoscale. Energy Environ. Sci. 2012, 5, 9319–9330.

    Article  CAS  Google Scholar 

  12. Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

    Article  CAS  Google Scholar 

  13. Wang, Y. X.; Su, H. Y.; He, Y. H.; Li, L. G.; Zhu, S. Q.; Shen, H.; Xie, P. F.; Fu, X. B.; Zhou, G. Y.; Feng, C. et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 2020, 120, 12217–12314.

    Article  CAS  Google Scholar 

  14. Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    Article  CAS  Google Scholar 

  15. Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479–484.

    Article  CAS  Google Scholar 

  16. Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

    Article  Google Scholar 

  17. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

    Article  Google Scholar 

  18. Ou, H. H.; Wang, D. S.; Li, Y. D. How to select effective electrocatalysts: Nano or single atom? Nano Select. 2020, DOI: https://doi.org/10.1002/nano.202000239.

  19. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  20. Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.

    Article  CAS  Google Scholar 

  21. Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

    Article  CAS  Google Scholar 

  22. Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.

    Article  Google Scholar 

  23. Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

    Article  CAS  Google Scholar 

  24. Liu, S. W.; Zhang, H. M.; Zhao, Q.; Zhang, X.; Liu, R. R.; Ge, X.; Wang, G. Z.; Zhao, H. J.; Cai, W. P. Metal-organic framework derived nitrogen-doped porous carbon@graphene sandwich-like structured composites as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Carbon 2016, 106, 74–83.

    Article  CAS  Google Scholar 

  25. Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 625–629.

    Article  Google Scholar 

  26. Ma, L. T.; Chen, S. M.; Pei, Z. X.; Huang, Y.; Liang, G. J.; Mo, F. N.; Yang, Q.; Su, J.; Gao, Y. H.; Zapien, J. A. et al. Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 2018, 12, 1949–1958.

    Article  CAS  Google Scholar 

  27. Lei, H.; Wang, Z. L.; Yang, F.; Huang, X. Q.; Liu, J. H.; Liang, Y. Y.; Xie, J. P.; Javed, M. S.; Lu, X. H.; Tan, S. Z. et al. NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy 2020, 68, 104293.

    Article  CAS  Google Scholar 

  28. Liu, Y. L.; Chen, F. J.; Ye, W.; Zeng, M.; Han, N.; Zhao, F. P.; Wang, X. X.; Li, Y. G. High-performance oxygen reduction electrocatalyst derived from polydopamine and cobalt supported on carbon nanotubes for metal-air batteries. Adv. Funct. Mater. 2017, 27, 1606034.

    Article  Google Scholar 

  29. Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3d carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 1616–16170.

    Article  Google Scholar 

  30. Xu, Y. Y.; Deng, P. L.; Chen, G. D.; Chen, J. X.; Yan, Y.; Qi, K.; Liu, H. F.; Xia, B. Y. 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries. Adv. Funct. Mater. 2020, 30, 1906081.

    Article  CAS  Google Scholar 

  31. Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 2019, 31, 1808043.

    Article  Google Scholar 

  32. Park;, K. S.; Ni, Z.; Côté, A. P.; Choi;, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    Article  CAS  Google Scholar 

  33. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  34. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

    Article  CAS  Google Scholar 

  35. Shinde, D. B.; Debgupta, J.; Kushwaha, A.; Aslam, M.; Pillai, V. K. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. J. Am. Chem. Soc. 2011, 133, 4168–4171.

    Article  CAS  Google Scholar 

  36. Wan, L.; Shamsaei, E.; Easton, C. D.; Yu, D. B.; Liang, Y.; Chen, X. F.; Abbasi, Z.; Akbari, A.; Zhang, X. W.; Wang, H. T. ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for highperformance supercapacitor. Carbon 2017, 121, 330–336.

    Article  CAS  Google Scholar 

  37. Hu, C. G.; Dai, L. M. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 2017, 29, 1604942.

    Article  Google Scholar 

  38. Miao, Z. P.; Wang, X. M.; Tsai, M. C.; Jin, Q. J.; Liang, J. S.; Ma, F.; Wang, T. Y.; Zheng, S. J.; Hwang, B. J.; Huang, Y. H. et al. Atomically dispersed Fe-Nx/C electrocatalyst boosts oxygen catalysis via a new metal-organic polymer supramolecule strategy. Adv. Energy Mater. 2018, 8, 1801226.

    Article  Google Scholar 

  39. Lai, Q. X.; Zheng, L. R.; Liang, Y. Y.; He, J. P.; Zhao, J. X.; Chen, J. H. Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 2017, 7, 1655–1663.

    Article  CAS  Google Scholar 

  40. Ahn, S. H.; Yu, X.; Manthiram, A. “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv. Mater. 2017, 29, 1606534.

    Article  Google Scholar 

  41. Xia, Z. M.; Zhang, H.; Shen, K. C.; Qu, Y. Q.; Jiang, Z. Wavelet analysis of extended X-ray absorption fine structure data: Theory, application. Phys. B Condens. Matter. 2018, 542, 12–19.

    Article  CAS  Google Scholar 

  42. Jiang, P.; Chen, J.; Wang, C. L.; Yang, K.; Gong, S. P.; Liu, S.; Lin, Z. Y.; Li, M. S.; Xia, G. L.; Yang, Y. et al. Tuning the activity of carbon for electrocatalytic hydrogen evolution via an iridium-cobalt alloy core encapsulated in nitrogen-doped carbon cages. Adv. Mater. 2018, 30, 1705324.

    Article  Google Scholar 

  43. Shinde, S. S.; Lee, C. H.; Yu, J. Y.; Kim, D. H.; Lee, S. U.; Lee, J. H. Hierarchically designed 3D holey C2N aerogels as bifunctional oxygen electrodes for flexible and rechargeable Zn-air batteries. ACS Nano 2018, 12, 596–608.

    Article  CAS  Google Scholar 

  44. Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (No. 2016YFA0201904), the National Natural Science Foundation of China (No. 21631002), Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXTD-202001), Shenzhen Basic Research Project (No. JCYJ20170817113121505), and Shenzhen KQTD Project (No. KQTD20180411143400981).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Electronic Supplementary Material

12274_2021_3369_MOESM1_ESM.pdf

Carbon nanotube supported bifunctional electrocatalysts containing iron-nitrogen-carbon active sites for zinc-air batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, J., Zhu, S., Jia, G. et al. Carbon nanotube supported bifunctional electrocatalysts containing iron-nitrogen-carbon active sites for zinc-air batteries. Nano Res. 14, 4541–4547 (2021). https://doi.org/10.1007/s12274-021-3369-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3369-0

Keywords

Navigation