Skip to main content
Log in

Metal-organic framework-derived Ni/ZnO nano-sponges with delicate surface vacancies as anode materials for high-performance supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ni/ZnO nano-sponges have been successfully synthesized through optimized annealing of Ni/Zn-based organic framework (Ni/Zn-MOF). The annealed MOF provides the stable carbon structure with 3D interconnection and prevents structural collapse during the charging and discharging process. The annealing causes the incorporation of intrinsic Ni3+ in the surface of NiO nanoparticles, providing more reaction active sites. The oxygen vacancies in ZnO and heterostructure interfaces between NiO and ZnO promote the charge transformation. Based on the aforementioned advantages, the Ni/ZnO nanocomposites exhibit excellent electrocatalytic performances for supercapacitors. The specific capacitance can reach to 807 F·g−1 at 1 A·g−1 in the studied electrodes. After 5,000 cycles at 10 A·g−1, the cyclic stability remains excellent at 86% of the initial capacitance. Moreover, the as-prepared asymmetric supercapacitor exhibits a high energy density of 30.6 W·h·kg−1 at power density of 398 W·kg−1. This study is expected to provide new insights into exploring the potential mechanism of catalyst action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

    Article  CAS  Google Scholar 

  2. Wang, J. S.; Zhang, X.; Li, Z.; Ma, Y. Q.; Ma, L. Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 2020, 451, 227794.

    Article  CAS  Google Scholar 

  3. Hussain, N.; Wu, F. F.; Xu, L. Q.; Qian, Y. T. Co0.85Se hollow spheres constructed of ultrathin 2D mesoporous nanosheets as a novel bifunctional-electrode for supercapacitor and water splitting. Nano Res. 2019, 12, 2941–2946.

    Article  CAS  Google Scholar 

  4. Chen, T.; Li, M.; Song, S.; Kim, P.; Bae, J. Biotemplate preparation of multilayered TiC nanoflakes for high performance symmetric supercapacitor. Nano Energy 2020, 71, 104549.

    Article  CAS  Google Scholar 

  5. Li, W. H.; Ding, K.; Tian, H. R.; Yao, M. S.; Nath, B.; Deng, W. H.; Wang, Y. B.; Xu, G. Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater. 2017, 27, 1702067.

    Article  CAS  Google Scholar 

  6. Tong, L.; Jiang, C.; Cai, K. F.; Wei, P. High-performance and freestanding PPy/Ti3C2Tx composite film for flexible all-solid-state supercapacitors. J. Power Sources 2020, 465, 228267.

    Article  CAS  Google Scholar 

  7. Li, M. P.; El-Kady, M. F.; Hwang, J. Y.; Kowal, M. D.; Marsh, K.; Wang, H. S.; Zhao, Z. J.; Kaner, R. B. Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices. Nano Res. 2018, 11, 2836–2846.

    Article  CAS  Google Scholar 

  8. Chen, Y. Z.; Zhou, T. F.; Li, L.; Pang, W. K.; He, X. M.; Liu, Y. N.; Guo, Z. P. Interfacial engineering of nickel boride/metaborate and its effect on high energy density asymmetric supercapacitors. ACS Nano 2019, 13, 9376–9385.

    Article  CAS  Google Scholar 

  9. Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.

    Article  CAS  Google Scholar 

  10. Selvakumar, M.; Bhat, D. K.; Aggarwal, A. M.; Iyer, S. P.; Sravani, G. Nano ZnO-activated carbon composite electrodes for supercapacitors. Phys. B: Condens Matter 2010, 405, 2286–2289.

    Article  CAS  Google Scholar 

  11. Ouyang, Y.; Xia, X. F.; Ye, H. T.; Wang, L.; Jiao, X. Y.; Lei, W.; Hao, Q. L. Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl. Mater. Interfaces 2018, 10, 3549–3561.

    Article  CAS  Google Scholar 

  12. He, X. L.; Yoo, J. E.; Lee, M. H.; Bae, J. Morphology engineering of ZnO nanostructures for high performance supercapacitors: Enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires. Nanotechnology 2017, 28, 245402.

    Article  CAS  Google Scholar 

  13. Wang, X. S.; Pan, Z. H.; Wu, Y.; Ding, X. Y.; Hong, X. J.; Xu, G. G.; Liu, M. N.; Zhang, Y. G.; Li, W. S. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Res. 2018, 12, 525–529.

    Article  CAS  Google Scholar 

  14. Fang, L. X.; Zhang, B. L.; Li, W.; Zhang, J. Z.; Huang, K. J.; Zhang, Q. Y. Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors. Electrochim. Acta 2014, 148, 164–169.

    Article  CAS  Google Scholar 

  15. Lu, Z. Y.; Chang, Z.; Liu, J. F.; Sun, X. M. Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res. 2011, 4, 658.

    Article  CAS  Google Scholar 

  16. Lu, Z. Y.; Chang, Z.; Zhu, W.; Sun, X. M. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 2011, 47, 9651–9653.

    Article  CAS  Google Scholar 

  17. Meng, G.; Yang, Q.; Wu, X. C.; Wan, P. B.; Li, Y. P.; Lei, X. D.; Sun, X. M.; Liu, J. F. Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor. Nano Energy 2016, 30, 831–839.

    Article  CAS  Google Scholar 

  18. Zhi, M. J.; Xiang, C. C.; Li, J. T.; Li, M.; Wu, N. Q. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale 2013, 5, 72–88.

    Article  CAS  Google Scholar 

  19. Gao, P.; Chen, Z.; Gong, Y. X.; Zhang, R.; Liu, H.; Tang, P.; Chen, X. H.; Passerini, S.; Liu, J. L. The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: Synthesis, advanced characterization, and fundamentals. Adv. Energy Mater. 2020, 10, 1903780.

    Article  CAS  Google Scholar 

  20. Wang, J.; Chen, R. S.; Xiang, L.; Komarneni, S. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceram. Int. 2018, 44, 7357–7377.

    Article  CAS  Google Scholar 

  21. Bi, W. C.; Wu, Y. J.; Liu, C. F.; Wang, J. C.; Du, Y. C.; Gao, G. H.; Wu, G. M.; Cao, G. Z. Gradient oxygen vacancies in V2O5/PEDOT nanocables for high-performance supercapacitors. ACS Appl. Energy Mater. 2019, 2, 668–677.

    Article  CAS  Google Scholar 

  22. Du, Y. H.; Wang, X. Y.; Sun, J. C. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2020, 14, 754–761.

    Article  CAS  Google Scholar 

  23. Cai, Z.; Bi, Y. M.; Hu, E. Y.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X. L.; Kuang, Y.; Li, Y. P.; Yang, X. Q. et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 2018, 8, 1701694.

    Article  CAS  Google Scholar 

  24. Salunkhe, R. R.; Kaneti, Y. V.; Yamauchi, Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects. ACS Nano 2017, 11, 5293–5308.

    Article  CAS  Google Scholar 

  25. Cruz-Navarro, J. A.; Hernandez-Garcia, F.; Romero, G. A. A. Novel applications of metal-organic frameworks (MOFs) as redox-active materials for elaboration of carbon-based electrodes with electroanalytical uses. Coord. Chem. Rev. 2020, 412, 213263.

    Article  CAS  Google Scholar 

  26. Liu, S. T.; Zhou, J. S.; Song, H. H. 2D Zn-hexamine coordination frameworks and their derived N-rich porous carbon nanosheets for ultrafast sodium storage. Adv. Energy Mater. 2018, 8, 1800569.

    Article  CAS  Google Scholar 

  27. Hendon, C. H.; Rieth, A. J.; Korzyński, M. D.; Dincă, M. Grand challenges and future opportunities for metal-organic frameworks. ACS Cent. Sci. 2017, 3, 554–563.

    Article  CAS  Google Scholar 

  28. Jiao, Y.; Hong, W. Z.; Li, P. Y.; Wang, L. X.; Chen, G. Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor. Appl. Catal. B Environ. 2019, 244, 732–739.

    Article  CAS  Google Scholar 

  29. Dillip, G. R.; Banerjee, A. N.; Anitha, V. C.; Raju, B. D. P.; Joo, S. W.; Min, B. K. Oxygen vacancy-induced structural, optical, and enhanced supercapacitive performance of zinc oxide anchored graphitic carbon nanofiber hybrid electrodes. ACS Appl. Mater. Interfaces 2016, 8, 5025–5039.

    Article  CAS  Google Scholar 

  30. Katea, S. N.; Hajduk, Š.; Orel, Z. C.; Westin, G. Low cost, fast solution synthesis of 3D framework ZnO nanosponges. Inorg. Chem. 2017, 56, 15150–15158.

    Article  CAS  Google Scholar 

  31. Anžlovar, A.; Kogej, K.; Orel, Z. C.; Žigon, M. Impact of inorganic hydroxides on ZnO nanoparticle formation and morphology. Cryst. Growth Des. 2014, 14, 4262–4269.

    Article  CAS  Google Scholar 

  32. Shingange, K.; Swart, H. C.; Mhlongo, G. H. H2S detection capabilities with fibrous-like La-doped ZnO nanostructures: A comparative study on the combined effects of La-doping and post-annealing. J. Alloys Compd. 2019, 797, 284–301.

    Article  CAS  Google Scholar 

  33. Chan, Y. C.; Yu, J.; Ho, D. Morphology, stoichiometry, and crystal structure control via post-annealing for Pt-ZnO nanograin Schottky barrier interfaces. Appl. Surf. Sci. 2018, 443, 506–514.

    Article  CAS  Google Scholar 

  34. Namoune, A.; Touam, T.; Chelouche, A. Thickness, annealing and substrate effects on structural, morphological, optical and waveguiding properties of RF sputtered ZnO thin films. J. Mater. Sci.: Mater. Electron. 2017, 28, 12207–12219.

    CAS  Google Scholar 

  35. Naeem, F.; Naeem, S.; Zhao, Z.; Shu, G. Q.; Zhang, J.; Mei, Y. F.; Huang, G. S. Atomic layer deposition synthesized ZnO nanomembranes: A facile route towards stable supercapacitor electrode for high capacitance. J. Power Sources 2020, 451, 227740.

    Article  CAS  Google Scholar 

  36. Guerra, A.; Achour, A.; Vizireanu, S.; Dinescu, G.; Messaci, S.; Hadjersi, T.; Boukherroub, R.; Coffinier, Y.; Pireaux, J. J. ZnO/Carbon nanowalls shell/core nanostructures as electrodes for supercapacitors. Appl. Surf. Sci. 2019, 481, 926–932.

    Article  CAS  Google Scholar 

  37. Reddy, I. N.; Reddy, C. V.; Sreedhar, A.; Shim, J.; Cho, M.; Yoo, K.; Kim, D. Structural, optical, and bifunctional applications: Super-capacitor and photoelectrochemical water splitting of Ni-doped ZnO nanostructures. J. Electroanal. Chem. 2018, 828, 124–136.

    Article  CAS  Google Scholar 

  38. Jaramillo, A. F.; Baez-Cruz, R.; Montoya, L. F.; Medinam, C.; Pérez-Tijerina, E.; Salazar, F.; Rojas, D.; Melendrez, M. F. Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy. Ceram. Int. 2017, 43, 11838–11847.

    Article  CAS  Google Scholar 

  39. Chen, S. J.; Liu, Y. C.; Shao, C. L.; Mu, R.; Lu, Y. M.; Zhang, J. Y.; Shen, D. Z.; Fan, X. W. Structural and optical properties of uniform ZnO nanosheets. Adv. Mater. 2005, 17, 586–590.

    Article  CAS  Google Scholar 

  40. Serrano, J.; Romero, A. H.; Manjön, F. J.; Lauck, R.; Cardona, M.; Rubio, A. Pressure dependence of the lattice dynamics of ZnO: An ab initio approach. Phys. Rev. B 2004, 69, 094306.

    Article  CAS  Google Scholar 

  41. Xu, J.; Li, M.; Yang, L. Y.; Qiu, J. H.; Chen, Q.; Zhang, X. F.; Feng, Y.; Yao, J. F. Synergy of Ni dopant and oxygen vacancies in ZnO for efficient photocatalytic depolymerization of sodium lignosulfonate. Chem. Eng. J. 2020, 394, 125050.

    Article  CAS  Google Scholar 

  42. Wang, Y. Y.; Xiao, X.; Li, Q.; Pang, H. Synthesis and progress of new oxygen-vacant electrode materials for high-energy rechargeable battery applications. Small 2018, 14, 1802193.

    Article  CAS  Google Scholar 

  43. Zhou, D. J.; Xiong, X. Y.; Cai, Z.; Han, N. N.; Jia, Y.; Xie, Q. X.; Duan, X. X.; Xie, T. H.; Zheng, X. L.; Sun, X. M. et al. Flame-engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity. Small Methods 2018, 2, 1800083.

    Article  CAS  Google Scholar 

  44. Zannotti, M.; Benazzi, E.; Stevens, L. A.; Minicucci, M.; Bruce, L.; Snape, C. E.; Gibson, E. A.; Giovannetti, R. Reduced graphene oxide-NiO photocathodes for p-type dye-sensitized solar cells. ACS Appl. Energy Mater. 2019, 2, 7345–7353.

    Article  CAS  Google Scholar 

  45. Duan, W. J.; Lu, S. H.; Wu, Z. L.; Wang, Y. S. Size effects on properties of NiO nanoparticles grown in alkalisalts. J. Phys. Chem. C 2012, 116, 26043–26051.

    Article  CAS  Google Scholar 

  46. Sunny, A.; Balasubramanian, K. Raman spectral probe on size-dependent surface optical phonon modes and magnon properties of NiO nanoparticles. J. Phys. Chem. C 2020, 124, 12636–12644.

    Article  CAS  Google Scholar 

  47. Kaschner, A.; Haboeck, U.; Strassburg, M.; Strassburg, M.; Kaczmarczyk, G.; Hoffmann, A.; Thomsen, C.; Zeuner, A.; Alves, H. R.; Hofmann, D. M. et al. Nitrogen-related local vibrational modes in ZnO: N. Appl. Phys. Lett. 2002, 80, 1909–1911.

    Article  CAS  Google Scholar 

  48. Dong, J. J.; Zhang, X. W.; You, J. B.; Cai, P. F.; Yin, Z. G.; An, Q.; Ma, X. B.; Jin, P.; Wang, Z. G.; Chu, P. K. Effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films: Identification of hydrogen donors in ZnO. ACS Appl. Mater. Interfaces 2010, 2, 1780–1784.

    Article  CAS  Google Scholar 

  49. Rana, A. K.; Kumar, Y.; Rajput, P.; Jha, S. N.; Bhattacharyya, D.; Shirage, P. M. Search for origin of room temperature ferromagnetism properties in Ni-doped ZnO nanostructure. ACS Appl. Mater. Interfaces 2017, 9, 7691–7700.

    Article  CAS  Google Scholar 

  50. Manjón, F. J.; Marí, B.; Serrano, J.; Romero, A. H. Silent Raman modes in zinc oxide and related nitrides. J. Appl. Phys. 2005, 97, 053516.

    Article  CAS  Google Scholar 

  51. He, J. J.; Zhang, D. Y.; Wang, Y. L.; Zhang, J. W.; Yang, B. B.; Shi, H.; Wang, K. J.; Wang, Y. Biomass-derived porous carbons with tailored graphitization degree and pore size distribution for supercapacitors with ultra-high rate capability. Appl. Surf. Sci. 2020, 515, 146020.

    Article  CAS  Google Scholar 

  52. Fu, F. B.; Yang, D. J.; Wang, H.; Qian, Y.; Yuan, F.; Zhong, J. Q.; Qiu, X. Q. Three-dimensional porous framework lignin-derived carbon/ZnO composite fabricated by a facile electrostatic self-assembly showing good stability for high-performance supercapacitors. ACS Sustainable Chem. Eng. 2019, 7, 16419–16427.

    Article  CAS  Google Scholar 

  53. Obradovic, N.; Stevanovic, S.; Zeljkovic, V.; Ristic, M. M. Influence of ZnO specific surface area on its sintering kinetics. Powder Metall. Met. Ceram. 2009, 48, 182–185.

    Article  CAS  Google Scholar 

  54. Park, K.; Zhang, Q. F.; Garcia, B. B.; Cao, G. Z. Effect of annealing temperature on TiO2-ZnO core-shell aggregate photoelectrodes of dye-sensitized solar cells. J. Phys. Chem. C 2011, 115, 4927–4934.

    Article  CAS  Google Scholar 

  55. Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517–6524.

    Article  CAS  Google Scholar 

  56. Wang, J. S.; Jin, H. H.; Wang, W. H.; Zhao, Y. H.; Li, Y.; Bao, M. Ultrasmall Ni-ZnO/SiO2 synergistic catalyst for highly efficient hydrogenation of NaHCO3 to formic acid. ACS Appl. Mater. Interfaces 2020, 12, 19581–19586.

    Article  CAS  Google Scholar 

  57. Arunpandiyan, S.; Bharathi, S.; Pandikumar, A.; Arasi, S. E.; Arivarasan, A. Structural analysis and redox additive electrolyte based supercapacitor performance of ZnO/CeO2 nanocomposite. Mater. Sci. Semicond. Process. 2020, 106, 104765.

    Article  CAS  Google Scholar 

  58. Li, Y.; Wei, Q. L.; Wang, R.; Zhao, J. K.; Quan, Z. L.; Zhan, T. R.; Li, D. X.; Xu, J.; Teng, H. N.; Hou, W. G. 3D hierarchical porous nitrogen-doped carbon/Ni@NiO nanocomposites self-templated by cross-linked polyacrylamide gel for high performance supercapacitor electrode. J. Colloid Interface Sci. 2020, 570, 286–299.

    Article  CAS  Google Scholar 

  59. Mahajan, H.; Bae, J.; Yun, K. Facile synthesis of ZnO-Au nanocomposites for high-performance supercapacitors. J. Alloys Compd. 2018, 758, 131–139.

    Article  CAS  Google Scholar 

  60. Yang, P.; Song, X. L.; Jia, C. C.; Chen, H. S. Metal-organic framework-derived hierarchical ZnO/NiO composites: Morphology, microstructure and electrochemical performance. J. Ind. Eng. Chem. 2018, 62, 250–257.

    Article  CAS  Google Scholar 

  61. Wu, G. Y.; Song, Y.; Wan, J. F.; Zhang, C. W.; Yin, F. X. Synthesis of ultrafine ZnO nanoparticles supported on nitrogen-doped ordered hierarchically porous carbon for supercapacitor. J. Alloys Compd. 2019, 806, 464–470.

    Article  CAS  Google Scholar 

  62. Samuel, E.; Joshi, B.; Kim, Y. I.; Aldalbahi, A.; Rahaman, M.; Yoon, S. S. ZnO/MnO, nanoflowers for high-performance supercapacitor electrodes. ACS Sustainable Chem. Eng. 2020, 8, 3697–3708.

    Article  CAS  Google Scholar 

  63. Di, S.; Gong, L. G.; Zhou, B. B. Precipitated synthesis of Al2O3-ZnO nanorod for high-performance symmetrical supercapacitors. Mater. Chem. Phys. 2020, 253, 123289.

    Article  CAS  Google Scholar 

  64. Liu, J.; Xu, T.; Sun, X. W.; Bai, J.; Li, C. P. Preparation of stable composite porous nanofibers carried SnOx-ZnO as a flexible supercapacitor material with excellent electrochemical and cycling performance. J. Alloys Compd. 2019, 807, 151652.

    Article  CAS  Google Scholar 

  65. Mao, X. Q.; Wang, W. Z.; Wang, Z. H. Hydrothermal synthesis of ZnxNi1−xS nanosheets for hybrid supercapacitor applications. ChemPlusChem 2017, 82, 1145–1152.

    Article  Google Scholar 

  66. Sasirekha, C.; Arumugam, S.; Muralidharan, G. Green synthesis of ZnO/carbon (ZnO/C) as an electrode material for symmetric supercapacitor devices. Appl. Surf. Sci. 2018, 449, 521–527.

    Article  CAS  Google Scholar 

  67. Shang, Y. Y.; Xie, T.; Ma, C. L.; Su, L. H.; Gai, Y. S.; Liu, J.; Gong, L. Y. Synthesis of hollow ZnCo2O4 microspheres with enhanced electrochemical performance for asymmetric supercapacitor. Electrochim. Acta 2018, 286, 103–113.

    Article  CAS  Google Scholar 

  68. Pang, H.; Ma, Y. H.; Li, G. C.; Chen, J.; Zhang, J. S.; Zheng, H. H.; Du, W. M. Facile synthesis of porous ZnO-NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. Dalton Trans. 2012, 41, 13284–13291.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11975043 and 11605007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chubin Wan or Xin Ju.

Electronic Supplementary Material

12274_2021_3341_MOESM1_ESM.pdf

Metal-organic framework-derived Ni/ZnO nano-sponges with delicate surface vacancies as anode materials for high-performance supercapacitors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, A., Wan, C., Hu, X. et al. Metal-organic framework-derived Ni/ZnO nano-sponges with delicate surface vacancies as anode materials for high-performance supercapacitors. Nano Res. 14, 4063–4072 (2021). https://doi.org/10.1007/s12274-021-3341-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3341-z

Keywords

Navigation