Skip to main content
Log in

Robust perfluorinated porous organic networks: Succinct synthetic strategy and application in chlorofluorocarbons adsorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fluorinated porous organic networks (F-PONs) have demonstrated unique properties and applications, but approaches capable of affording F-PONs with high fluorine content and robust nanoporous architecture under metal-free and easy handling conditions are still rarely reported. Herein, using polydivinylbenzene (PDVB) as an easily available precursor, a novel and straightforward approach was developed to afford F-PONs via a dehydrative Friedel-Crafts reaction using perfluorinated benzylic alcohols as the cross-linking agent promoted by Bransted acid (trifluoromethanesulfonic acid). The afforded material (F-PDVB) featured high fluorine content (22 at.%), large surface area (771 m2·g−1), and good chemical/thermal stability, rendering them as promising candidates for the adsorption of CO2, hydrocarbons, fluorocarbons, and chlorofluorocarbons, with weight capacities up to 520 wt.% being achieved. This simple methodology can be extended to fabricate fluorinated hyper-crosslinked polymers (F-HCPs) from rigid aromatic monomers. The progress made in this work will open new opportunities to further expand the involvement of fluorinated materials in large scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noro, S. I.; Nakamura, T. Fluorine-functionalized metal-organic frameworks and porous coordination polymers. NPG Asia Mater. 2017, 9, e433.

    Article  Google Scholar 

  2. Chen, H.; Yang, Z. Z.; Do-Thanh, C. L.; Dai, S. What fluorine can do in CO2 chemistry: Applications from homogeneous to heterogeneous systems. ChemSusChem 2020, 13, 6182–6200.

    CAS  Google Scholar 

  3. Yang, C.; Kaipa, U.; Mather, Q. Z.; Wang, X. P.; Nesterov, V.; Venero, A. F.; Omary, M. A. Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage. J. Am. Chem. Soc. 2011, 133, 18094–18097.

    Article  CAS  Google Scholar 

  4. D’Amato, R.; Donnadio, A.; Carta, M.; Sangregorio, C.; Tiana, D.; Vivani, R.; Taddei, M.; Costantino, F. Water-based synthesis and enhanced CO2 capture performance of perfluorinated cerium-based metal-organic frameworks with UiO-66 and MIL-140 topology. ACS Sustain. Chem. Eng. 2019, 7, 394–402.

    Article  Google Scholar 

  5. Ji, P. F.; Drake, T.; Murakami, A.; Oliveres, P.; Skone, J. H.; Lin, W. B. Tuning lewis acidity of metal-organic frameworks via perfluorination of bridging ligands: Spectroscopic, theoretical, and catalytic studies. J. Am. Chem. Soc. 2018, 140, 10553–10561.

    Article  CAS  Google Scholar 

  6. Chen, X.; Addicoat, M.; Irle, S.; Nagai, A.; Jiang, D. L. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary n-electronic force. J. Am. Chem. Soc. 2013, 135, 546–549.

    Article  CAS  Google Scholar 

  7. Braunecker, W. A.; Hurst, K. E.; Ray, K. G.; Owczarczyk, Z. R.; Martinez, M. B.; Leick, N.; Keuhlen, A.; Sellinger, A.; Johnson, J. C. Phenyl/perfluorophenyl stacking interactions enhance structural order in two-dimensional covalent organic frameworks. Cryst. Growth Des. 2018, 18, 4160–1166.

    Article  CAS  Google Scholar 

  8. Alahakoon, S. B.; McCandless, G. T.; Karunathilake, A. A. K.; Thompson, C. M.; Smaldone, R. A. Enhanced structural organization in covalent organic frameworks through fluorination. Chem.—Eur. J. 2017, 23, 4255–4259.

    Article  CAS  Google Scholar 

  9. Liao, Q. B.; Ke, C.; Huang, X.; Zhang, G. Y; Zhang, Q.; Zhang, Z. W.; Zhang, Y. Y.; Liu, Y. Z.; Ning, F. Y.; Xi, K. Catalyst-free and efficient fabrication of highly crystalline fluorinated covalent organic frameworks for selective guest adsorption. J. Mater. Chem. A 2019, 7, 18959–18970.

    Article  CAS  Google Scholar 

  10. Wang, D. G.; Li, N.; Hu, Y. M.; Wan, S.; Song, M.; Yu, G. P.; Jin, Y. H.; Wei, W. F.; Han, K.; Kuang, G. C. et al. Highly fluoro-substituted covalent organic framework and its application in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 42233–42240.

    Article  CAS  Google Scholar 

  11. Li, G. Y.; Zhang, B.; Wang, Z. G. Facile synthesis of fluorinated microporous polyaminals for adsorption of carbon dioxide and selectivities over nitrogen and methane. Macromolecules 2016, 49, 2575–2581.

    Article  CAS  Google Scholar 

  12. Comotti, A.; Castiglioni, F.; Bracco, S.; Perego, J.; Pedrini, A.; Negroni, M.; Sozzani, P. Fluorinated porous organic frameworks for improved CO2 and CH4 capture. Chem. Commun. 2019, 55, 8999–9002.

    Article  CAS  Google Scholar 

  13. Ge, M. T.; Liu, H. Z. Fluorine-containing silsesquioxane-based hybrid porous polymers mediated by bases and their use in water remediation. Chem. Eur. J. 2018, 24, 2224–2231.

    Article  CAS  Google Scholar 

  14. Kim, S.; Thirion, D.; Nguyen, T. S.; Kim, B.; Dogan, N. A.; Yavuz, C. T. Sustainable synthesis of superhydrophobic perfluorinated nanoporous networks for small molecule separation. Chem. Mater. 2019, 31, 5206–5213.

    Article  CAS  Google Scholar 

  15. Thirion, D.; Kwon, Y.; Rozyyev, V.; Byun, J.; Yavuz, C. T. Synthesis and easy functionalization of highly porous networks through exchangeable fluorines for target specific applications. Chem. Mater. 2016, 28, 5592–5595.

    Article  CAS  Google Scholar 

  16. Cao, Q.; Yin, Q.; Chen, Q.; Dong, Z. B.; Han, B. H. Fluorinated porous conjugated polyporphyrins through direct C-H arylation polycondensation: Preparation, porosity, and use as heterogeneous catalysts for baeyer-villiger oxidation. Chem.—Eur. J. 2017, 23, 9831–9837.

    Article  CAS  Google Scholar 

  17. Liu, D. P.; Chen, Q.; Zhao, Y. C.; Zhang, L. M.; Qi, A. D.; Han, B. H. Fluorinated porous organic polymers via direct C-H arylation polycondensation. ACS Macro Lett. 2013, 2, 522–526.

    Article  CAS  Google Scholar 

  18. Lu, W. G.; Wei, Z. W.; Yuan, D. Q.; Tian, J.; Fordham, S.; Zhou, H. C. Rational design and synthesis of porous polymer networks: Toward high surface area. Chem. Mater. 2014, 26, 4589–4597.

    Article  CAS  Google Scholar 

  19. Luo, Y. L.; Li, B. Y.; Wang, W.; Wu, K. B.; Tan, B. E. Hypercrosslinked aromatic heterocyclic microporous polymers: A new class of highly selective CO2 capturing materials. Adv. Mater. 2012, 24, 5703–5707.

    Article  CAS  Google Scholar 

  20. Huang, J.; Turner, S. R. Hypercrosslinked polymers: A review. Polym. Rev. 2018, 58, 1–41.

    Article  CAS  Google Scholar 

  21. Tan, L. X.; Tan, B. E. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chem. Soc. Rev. 2017, 46, 3322–3356.

    Article  CAS  Google Scholar 

  22. Liu, Y. C.; Wang, S.; Meng, X. Y.; Ye, Y.; Song, X. W.; Liang, Z. Q.; Zhao, Y. L. Molecular expansion for constructing porous organic polymers with high surface areas and well-defined nanopores. Angew. Chem., Int. Ed. 2020, 59, 19487–19493.

    Article  CAS  Google Scholar 

  23. Yao, S. W.; Yang, X.; Yu, M.; Zhang, Y. H.; Jiang, J. X. High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO2 capture. J. Mater. Chem. A 2014, 2, 8054–8059.

    Article  CAS  Google Scholar 

  24. Bhunia, S.; Banerjee, B.; Bhaumik, A. A new hypercrosslinked supermicroporous polymer, with scope for sulfonation, and its catalytic potential for the efficient synthesis of biodiesel at room temperature. Chem. Commun. 2015, 51, 5020–5023.

    Article  CAS  Google Scholar 

  25. Liu, G. L.; Wang, Y. X.; Shen, C. J.; Ju, Z. F.; Yuan, D. Q. A facile synthesis of microporous organic polymers for efficient gas storage and separation. J. Mater. Chem. A 2015, 3, 3051–3058.

    Article  CAS  Google Scholar 

  26. Chen, D. Y.; Gu, S.; Fu, Y.; Zhu, Y. L.; Liu, C.; Li, G. H.; Yu, G. P.; Pan, C. Y. Tunable porosity of nanoporous organic polymers with hierarchical pores for enhanced CO2 capture. Polym. Chem. 2016, 7, 3416–3422.

    Article  CAS  Google Scholar 

  27. Li, B. Y.; Guan, Z. H.; Yang, X. J.; Wang, W. D.; Wang, W.; Hussain, I.; Song, K. P.; Tan, B. E.; Li, T. Multifunctional microporous organic polymers. J. Mater. Chem. A 2014, 2, 11930–11939.

    Article  CAS  Google Scholar 

  28. Li, L. N.; Ren, H.; Yuan, Y.; Yu, G. L.; Zhu, G. S. Construction and adsorption properties of porous aromatic frameworks via AlCl3-triggered coupling polymerization. J. Mater. Chem. A 2014, 2, 11091–11098.

    Article  CAS  Google Scholar 

  29. Xiong, S. H.; Fu, X.; Xiang, L.; Yu, G. P.; Guan, J. G.; Wang, Z. G.; Du, Y.; Xiong, X.; Pan, C. Y. Liquid acid-catalysed fabrication of nanoporous 1,3,5-triazine frameworks with efficient and selective CO2 uptake. Polym. Chem. 2014, 5, 3424–3431.

    Article  CAS  Google Scholar 

  30. Zhang, Y. L.; Wang, J. N.; He, Y.; He, Y. Y.; Xu, B. B.; Wei, S.; Xiao, F. S. Solvothermal synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces. Langmuir 2011, 27, 12585–12590.

    Article  CAS  Google Scholar 

  31. He, J. X.; Zhao, G. H.; Mu, P.; Wei, H. J.; Su, Y. N.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Scalable fabrication of monolithic porous foam based on cross-linked aromatic polymers for efficient solar steam generation. Sol. Energy Mater. Sol. Cells 2019, 201, 110111.

    Article  CAS  Google Scholar 

  32. Krishnakumar, V.; Mathammal, R. A joint FTIR, FT-Raman and scaled quantum mechanical study of 1,3-dibromo-2,4,5,6-tetra-fluoro benzene (DTB) and 1,2,3,4,5-pentafluoro benzene (PB). J. Raman Spectrosc. 2009, 40, 1104–1109.

    Article  CAS  Google Scholar 

  33. Barpaga, D.; Nguyen, V. T.; Medasani, B. K.; Chatterjee, S.; McGrail, B. P.; Motkuri, R. K.; Dang, L. X. Insight into fluorocarbon adsorption in metal-organic frameworks via experiments and molecular simulations. Sci. Rep. 2019, 9, 10289.

    Article  Google Scholar 

  34. Chen, T. H.; Popov, I.; Kaveevivitchai, W.; Chuang, Y. C.; Chen, Y. S.; Jacobson, A. J.; Miljanic, O. S. Mesoporous fluorinated metal-organic frameworks with exceptional adsorption of fluorocarbons and CFCs. Angew. Chem., Int. Ed. 2015, 54, 13902–13906.

    Article  CAS  Google Scholar 

  35. Yang, Z. Z.; Wang, S.; Zhang, Z. H.; Guo, W.; Jie, K. C.; Hashim, M. I.; Miljanic, O. S.; Jiang, D. E.; Popovs, I.; Dai, S. Influence of fluorination on CO2 adsorption in materials derived from fluorinated covalent triazine framework precursors. J. Mater. Chem. A 2019, 7, 17277–17282.

    Article  CAS  Google Scholar 

  36. Motkuri, R. K.; Annapureddy, H. V. R.; Vijaykumar, M.; Schaef, H. T.; Martin, P. F.; McGrail, B. P.; Dang, L. X.; Krishna, R.; Thallapally, P. K. Fluorocarbon adsorption in hierarchical porous frameworks. Nat. Commun. 2014, 5, 4368.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. D. would like to take the opportunity to thank Prof. D. Y.. Zhao for his friendship and inspirational scientific discussion over the years. The research was supported financially by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy. Y. L. acknowledges the support of the Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenzhen Yang or Sheng Dai.

Electronic Supplementary Material

12274_2021_3339_MOESM1_ESM.pdf

Robust perfluorinated porous organic networks: Succinct synthetic strategy and application in chlorofluorocarbons adsorption

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Yang, Z., Suo, X. et al. Robust perfluorinated porous organic networks: Succinct synthetic strategy and application in chlorofluorocarbons adsorption. Nano Res. 14, 3282–3287 (2021). https://doi.org/10.1007/s12274-021-3339-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3339-6

Keywords

Navigation