Skip to main content
Log in

Discretely-supported nanoimprint lithography for patterning the high-spatial-frequency stepped surface

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Non-planar morphology is a common feature of devices applied in various physical fields, such as light or fluid, which pose a great challenge for surface nano-patterning to improve their performance. The present study proposes a discretely-supported nanoimprint lithography (NIL) technique to fabricate nanostructures on the extremely non-planar surface, namely high-spatial-frequency stepped surface. The designed discretely imprinting template implanted a discretely-supported intermediate buffer layer made of sparse pillars arrays. This allowed the simultaneous generation of air-cushion-like buffer and reliable support to the thin structured layer in the template. The resulting low bending stiffness and distributed concentrated load of the template jointly overcome the contact difficulty with a stepped surface, and enable the template to encase the stepped protrusion as tight as possible. Based on the proposed discretely-supported NIL, nanostructures were fabricated on the luminous interface of light emitting diodes chips that covered with micrometer step electrodes pad. About 96% of the utilized indium tin oxide transparent current spreading layer surface on top of the light emitting diode (LED) chips was coated with nanoholes array, with an increase by more than 40% in the optical output power. The excellent ability of nanopatterning a non-planar substrate could potentially lead innovate design and development of high performance device based on discretely-supported NIL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, P.; Zhou, X.; He, M.; Shang, Y. Q.; Tetlow, A. L.; Godwin, A. K.; Zeng, Y. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 2019, 3, 438–451.

    Article  CAS  Google Scholar 

  2. Kim, D. E.; Yu, D. I.; Jerng, D. W.; Kim, M. H.; Ahn, H. S. Review of boiling heat transfer enhancement on micro/nanostructured surfaces. Exp. Therm. Fluid Sci. 2015, 66, 173–196.

    Article  CAS  Google Scholar 

  3. Heverhagen, J.; Tasinkevych, M.; Rahman, A.; Black, C. T.; Checco, A. Slip length enhancement in nanofluidic flow using nanotextured superhydrophobic surfaces. Adv. Mater. Interfaces 2016, 3, 1600303.

    Article  Google Scholar 

  4. Andrew, T. L.; Tsai, H. Y.; Menon, R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science 2009, 324, 917–921.

    Article  CAS  Google Scholar 

  5. Sohn, W.; Park, H.; Yoo, G. Y.; Lee, C.; Park, S.; Kim, W. Visualization of UV by nanopatterned down-shifting materials mimicking human retinal cone cells. Adv. Funct. Mater. 2020, 30, 1905131.

    Article  CAS  Google Scholar 

  6. Sim, K.; Chen, S.; Li, Z. W.; Rao, Z.; Liu, J. S.; Lu, Y. T.; Jang, S.; Ershad, F.; Chen, J.; Xiao, J. L. et al. Three-dimensional curvy electronics created using conformal additive stamp printing. Nat. Electron. 2019, 2, 471–479.

    Article  CAS  Google Scholar 

  7. Guan, Y. S.; Thukral, A.; Zhang, S.; Sim, K.; Wang, X.; Zhang, Y. C.; Ershad, F.; Rao, Z.; Pan, F. J.; Wang, P. et al. Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics. Sci. Adv. 2020, 6, eabb3656.

    Article  CAS  Google Scholar 

  8. Sun, Y.; Jallerat, Q.; Szymanski, J. M.; Feinberg, A. W. Conformal nanopatterning of extracellular matrix proteins onto topographically complex surfaces. Nat. Methods 2015, 12, 134–136.

    Article  CAS  Google Scholar 

  9. Modaresifar, K.; Azizian, S.; Ganjian, M.; Fratila-Apachitei, L. E.; Zadpoor, A. A. Bactericidal effects of nanopatterns: A systematic review. Acta Biomater. 2019, 83, 29–36.

    Article  CAS  Google Scholar 

  10. Moharana, A. R.; Außerhuber, H. M.; Mitteramskogler, T.; Haslinger, M. J.; Mühlberger, M. M. Multilayer nanoimprinting to create hierarchical stamp masters for nanoimprinting of optical micro- and nanostructures. Coatings 2020, 10, 301.

    Article  CAS  Google Scholar 

  11. Park, J. H.; Park, K. Development of micropatterns on curved surfaces using two-step ultrasonic forming. Micromachines 2019, 10, 654.

    Article  CAS  Google Scholar 

  12. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 1996, 272, 85–87.

    Article  CAS  Google Scholar 

  13. Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495–513.

    Article  CAS  Google Scholar 

  14. Sreenivasan, S. V. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsyst. Nanoeng. 2017, 3, 17075.

    Article  CAS  Google Scholar 

  15. Baek, S.; Kim, K.; Sung, Y.; Jung, P.; Ju, S.; Kim, W.; Kim, S.; Hong, S. H.; Lee, H. Solution-processable multi-color printing using UV nanoimprint lithography. Nanotechnology 2020, 31, 125301.

    Article  CAS  Google Scholar 

  16. Liu, X. Y.; Liu, W. D.; Yang, B. Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform. Nano Res. 2019, 12, 845–853.

    Article  CAS  Google Scholar 

  17. Colburn, M.; Johnson, S. C.; Stewart, M. D.; Damle, S.; Bailey, T. C.; Choi, B.; Wedlake, M.; Michaelson, T. B.; Sreenivasan, S. V.; Ekerdt, J. G. et al. Step and flash imprint lithography: A new approach to high-resolution patterning. In Proceedings of SPIE 3676, Emerging Lithographic Technologies III, Santa Clara, USA, 1999.

  18. Zhu, S. Y.; Li, H. L.; Yang, M. S.; Pang, S. W. Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor. Nanoscale 2018, 10, 19927–19936.

    Article  CAS  Google Scholar 

  19. Traub, M. C.; Longsine, W.; Truskett, V. N. Advances in nanoimprint lithography. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 583–604.

    Article  Google Scholar 

  20. Wang, C. H.; Shao, J. Y.; Tian, H. M.; Li, X. M.; Ding, Y. C.; Li, B. Q. Step-controllable electric-field-assisted nanoimprint lithography for uneven large-area substrates. ACS Nano 2016, 10, 4354–4363.

    Article  CAS  Google Scholar 

  21. Ji, R.; Hornung, M.; Verschuuren, M. A.; van de Laar, R.; van Eekelen, J.; Plachetka, U.; Moeller, M.; Moormann, C. UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing. Microelectron. Eng. 2010, 87, 963–967.

    Article  CAS  Google Scholar 

  22. Haslinger, M. J.; Mitteramskogler, T.; Kopp, S.; Leichtfried, H.; Messerschmidt, M.; Thesen, M. W.; Mühlberge, M. Development of a soft UV-NIL step&repeat and lift-off process chain for high speed metal nanomesh fabrication. Nanotechnology 2020, 31, 345301.

    Article  CAS  Google Scholar 

  23. Dickson, M. N.; Tsao, J.; Liang, E. I.; Navarro, N. I.; Patel, Y. R.; Yee, A. F. Conformal reversal imprint lithography for polymer nanostructuring over large curved geometries. J. Vac. Sci. Technol. B 2017, 35, 021602.

    Article  Google Scholar 

  24. Li, Z. W.; Gu, Y. N.; Wang, L.; Ge, H. X.; Wu, W.; Xia, Q. F.; Yuan, C. S.; Chen, Y. F.; Cui, B.; Williams, R. S. Hybrid nanoimprint-soft lithography with sub-15 nm resolution. Nano Lett. 2009, 9, 2306–2310.

    Article  Google Scholar 

  25. Hu, X.; Huang, S. S.; Gu, R. H.; Yuan, C. S.; Ge, H. X.; Chen, Y. F. An oxygen-insensitive degradable resist for fabricating metallic patterns on highly curved surfaces by UV-nanoimprint lithography. Macromol. Rapid Commun. 2014, 35, 1712–1718.

    Article  CAS  Google Scholar 

  26. Tan, L.; Kong, Y. P.; Bao, L. R.; Huang, X. D.; Guo, L. J.; Pang, S. W.; Yee, A. F. Imprinting polymer film on patterned substrates. J. Vac. Sci. Technol. B 2003, 21, 2742–2748.

    Article  CAS  Google Scholar 

  27. Wang, C. H.; Shao, J. Y.; Lai, D. S.; Tian, H. M.; Li, X. M. Suspended-template electric-assisted nanoimprinting for hierarchical micro-nanostructures on a fragile substrate. ACS Nano 2019, 13, 10333–10342.

    Article  CAS  Google Scholar 

  28. Bhingardive, V.; Menahem, L.; Schvartzman, M. Soft thermal nanoimprint lithography using a nanocomposite mold. Nano Res. 2018, 11, 2705–2714.

    Article  CAS  Google Scholar 

  29. Oh, J. T.; Moon, Y. T.; Kang, D. S.; Park, C. K.; Han, J. W.; Jung, M. H.; Sung, Y. J.; Jeong, H. H.; Song, J. O.; Seong, T. Y. High efficiency ultraviolet GaN-based vertical light emitting diodes on 6-inch sapphire substrate using ex-situ sputtered AlN nucleation layer. Opt. Express 2018, 26, 5111–5117.

    Article  CAS  Google Scholar 

  30. Nakamura, S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 1998, 281, 956–961.

    Article  CAS  Google Scholar 

  31. Lee, K. J.; Oh, S.; Kim, S. J.; Yim, S. Y.; Myoung, N.; Lee, K.; Kim, J. S.; Jung, S. H.; Chung, T. H.; Park, S. J. Enhanced optical output in InGaN/GaN light-emitting diodes by tailored refractive index of nanoporous GaN. Nanotechnology 2019, 30, 415301.

    Article  CAS  Google Scholar 

  32. Li, Y.; Lan, J. Y.; Wang, W. L.; Zheng, Y. L.; Xie, W. T.; Tang, X.; Kong, D. Q.; Xia, Y.; Lan, Z. B.; Li, R. Z. et al. 395 nm GaN-based near-ultraviolet light-emitting diodes on Si substrates with a high wall-plug efficiency of 52.0%@350 mA. Opt. Express 2019, 27, 7447–7457.

    Article  CAS  Google Scholar 

  33. Wang, S. J.; Dou, X. Y.; Chen, L.; Fang, Y.; Wang, A. Q.; Shen, H. B.; Du, Z. L. Enhanced light out-coupling efficiency of quantum dot light emitting diodes by nanoimprint lithography. Nanoscale 2018, 10, 11651–11656.

    Article  CAS  Google Scholar 

  34. Otnes, G.; Heurlin, M.; Graczyk, M.; Wallentin, J.; Jacobsson, D.; Berg, A.; Maximov, I.; Borgström, M. T. Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography. Nano Res. 2016, 9, 2852–2861.

    Article  CAS  Google Scholar 

  35. Wu, D. X.; Rajput, N. S.; Luo, X. J. C. N. Nanoimprint lithography — the past, the present and the future. Curr. Nanosci. 2016, 12, 712–724.

    Article  CAS  Google Scholar 

  36. Sun, J. Z.; Guo, Y. Z.; Cui, B.; Chu, F. Q.; Li, H. Z.; Li, Y.; He, M.; Ding, D.; Liu, R. P.; Li, L. H. et al. Inkjet printing bendable circuits based on an oil-water interface reaction. Appl. Surf. Sci. 2018, 445, 391–397.

    Article  CAS  Google Scholar 

  37. Jain, A.; Spann, A.; Bonnecaze, R. T. Effect of droplet size, droplet placement, and gas dissolution on throughput and defect rate in UV nanoimprint lithography. J. Vac. Sci. Technol. B 2017, 35, 011602.

    Article  Google Scholar 

  38. Sun, J. Z.; Yun, C. H.; Cui, B.; Li, P. P.; Liu, G. P.; Wang, X.; Chu, F. Q. A facile approach for fabricating microstructured surface based on etched template by inkjet printing technology. Polymers 2018, 10, 1209.

    Article  Google Scholar 

  39. Singhal, S.; Sreenivasan, S. V. Influence of discrete drop locations on film thickness uniformity in UV-nanoimprint lithography. Microelectron. Eng. 2016, 164, 139–144.

    Article  CAS  Google Scholar 

  40. Huang, K. C.; Huang, Y. R.; Tseng, C. M.; Tseng, S. H.; Huang, J. E. Increased viewing angle and light extraction efficiency of flip-chip light-emitting diode using double-side patterned sapphire substrate. Scr. Mater. 2015, 108, 40–43.

    Article  CAS  Google Scholar 

  41. Wang, B.; Zhong, S. P.; Ge, Y. Q.; Wang, H. D.; Luo, X. L.; Zhang, H. Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene. Nano Res. 2020, 13, 891–918.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financed by the National Key R&D Program of China (No. 2017YFB1102900), the Natural Science Foundation of China (No. 51805422), the China Postdoctoral Science Foundation (No. 2019M653592), and the Basic Research Program of Natural Science of Shaanxi Province of China (No. 2019JLM-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyou Shao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Fan, Y., Shao, J. et al. Discretely-supported nanoimprint lithography for patterning the high-spatial-frequency stepped surface. Nano Res. 14, 2606–2612 (2021). https://doi.org/10.1007/s12274-020-3261-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3261-3

Keywords

Navigation