Skip to main content
Log in

Dual synergetic catalytic effects boost hydrogen electric oxidation performance of Pd/W18O49

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing anode catalysts of substantially enhanced activity for hydrogen oxidation reaction (HOR) and anti-CO poisoning performance is of great importance for the application of proton exchange membrane fuel cells (PEMFCs). Herein, we report Pd cluster in situ decorated urchin-like W18O49 (WO2.72) electrocatalysts by a photo-reduction method for high performance HOR. The synthesized Pd-WO2.72-L composite of low loading amount of 0.44 wt.% Pd by Xenon light reduction exhibits markedly high HOR catalytic activity and stability in 0.5 M H2SO4, and the specific HOR current density and mass activity of Pd-WO2.72-L are ∼ 1.5 and ∼ 80 times those of 20 wt.% Pt/C catalyst, respectively. Moreover, excellent anti-CO poisoning ability has also been obtained. The excellent HOR activity and anti-CO poisoning performance of Pd-WO2.72-L have been discussed mainly in terms of the dual synergetic catalytic effects between Pd and WO2.72: Pd activation to Pdδ+ by the electron transfer from Pd to W promotes the hydrogen adsorption and activation to H* species, which results in largely elevated HOR activity; Pd degradation due to the CO poisoning is effectively prevented by WO2.72, which is responsible for the excellent CO-tolerance performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunt, S. T.; Milina, M.; Wang, Z. S.; Román-Leshkov, Y. Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: Sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles. Energy Environ. Sci. 2016, 9, 3290–3301.

    Article  CAS  Google Scholar 

  2. Wang, Y. J.; Long, W. Y.; Wang, L. L.; Yuan, R. S.; Ignaszak, A.; Fang, B. Z.; Wilkinson, D. P. Unlocking the door to highly active ORR catalysts for PEMFC applications: Polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 2018, 11, 258–275.

    Article  CAS  Google Scholar 

  3. Wei, C.; Rao, R. R.; Peng, J. Y.; Huang, B. T.; Stephens, I. E. L.; Risch, M.; Xu, Z. J.; Shao-Horn, Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 2019, 31, 1806296.

    Article  Google Scholar 

  4. Tian, X. Y.; Zhao, P. C.; Sheng, W. C. Hydrogen evolution and oxidation: Mechanistic studies and material advances. Adv. Mater. 2019, 31, 1808066.

    Article  Google Scholar 

  5. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  6. Tang, Y. F.; Zhang, H. M.; Zhong, H. X.; Xu, Z. In-situ investigation on the CO tolerance of carbon supported Pd-Pt electrocatalysts with low Pt content by electrochemical impedance spectroscopy. Int. J. Hydrogen Energy 2012, 37, 2129–2136.

    Article  CAS  Google Scholar 

  7. Tang, S. S.; Courté, M.; Peng, J. J.; Fichou, D. Oxygen-deficient WO3 via high-temperature two-step annealing for enhanced and highly stable water splitting. Chem. Commun. 2019, 55, 7958–7961.

    Article  CAS  Google Scholar 

  8. Zheng, T. T.; Sang, W.; He, Z. H.; Wei, Q. S.; Chen, B. W.; Li, H. L.; Cao, C.; Huang, R. J.; Yan, X. P.; Pan, B. C. et al. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. Nano Lett. 2017, 17, 7968–7973.

    Article  CAS  Google Scholar 

  9. Xu, J.; Li, Y. Y.; Wang, L.; Cai, Q. F.; Li, Q. W.; Gao, B.; Zhang, X. M.; Huo, K. F.; Chu, P. K. High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes. Nanoscale 2016, 8, 16761–16768.

    Article  CAS  Google Scholar 

  10. Huang, Z. F.; Song, J. J.; Pan, L.; Zhang, X. W.; Wang, L.; Zou, J. J. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 2015, 27, 5309–5327.

    Article  CAS  Google Scholar 

  11. Fu, J. W.; Xu, Q. L.; Low, J.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 2019, 243, 556–565.

    Article  CAS  Google Scholar 

  12. Zou, Y. D.; Xi, S. B.; Bo, T.; Zhou, X. R.; Ma, J. H.; Yang, X. Y.; Diao, C. Z.; Deng, Y. H. Mesoporous amorphous Al2O3/crystalline WO3 heterophase hybrids for electrocatalysis and gas sensing applications. J. Mater. Chem. A 2019, 7, 21874–21883.

    Article  CAS  Google Scholar 

  13. Ma, J. H.; Ren, Y.; Zhou, X. R.; Liu, L. L.; Zhu, Y. H.; Cheng, X. W.; Xu, P. C.; Li, X. X.; Deng, Y. H.; Zhao, D. Y. Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: Gas sensing performance and mechanism study. Adv. Funct. Mater. 2018, 28, 1705268.

    Article  Google Scholar 

  14. Park, J.; Lee, S.; Kim, H. E.; Cho, A.; Kim, S.; Ye, Y.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3−x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16038–16042.

    Article  CAS  Google Scholar 

  15. Tian, H.; Cui, X. Z.; Zeng, L. M.; Su, L.; Song, Y. L.; Shi, J. L. Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst. J. Mater. Chem. A 2019, 7, 6285–6293.

    Article  CAS  Google Scholar 

  16. Cui, Y. L. S.; Xiao, K. F.; Bedford, N. M.; Lu, X. X.; Yun, J.; Amal, R.; Wang, D. W. Refilling nitrogen to oxygen vacancies in ultrafine tungsten oxide clusters for superior lithium storage. Adv. Energy Mater. 2019, 9, 1902148.

    Article  CAS  Google Scholar 

  17. Hobbs, B.; Tseung, A. C. C. High performance, platinum activated tungsten oxide fuel cell electrodes. Nature 1969, 222, 556–558.

    Article  CAS  Google Scholar 

  18. Brković, S. M.; Nikolić, V. M.; Marčeta Kaninski, M. P.; Pašti, I. A. Pt/C catalyst impregnated with tungsten-oxide — Hydrogen oxidation reaction vs. CO tolerance. Int. J. Hydrogen Energy 2019, 44, 13364–13372.

    Article  Google Scholar 

  19. Cui, X. Z.; Shi, J. L.; Chen, H. R.; Zhang, L. X.; Guo, L. M.; Gao, J. H.; Li, J. B. Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation. J. Phys. Chem. B 2008, 112, 12024–12031.

    Article  CAS  Google Scholar 

  20. Cui, X. Z.; Zhang, H.; Dong, X. P.; Chen, H. R.; Zhang, L. X.; Guo, L. M.; Shi, J. L. Electrochemical catalytic activity for the hydrogen oxidation of mesoporous WO3 and WO3/C composites. J. Mater. Chem. 2008, 18, 3575–3580.

    Article  CAS  Google Scholar 

  21. Cui, X.; Hua, Z.; Wei, C.; Shu, Z.; Zhang, L.; Chen, H.; Shi, J. An in situ carbonization-replication method to synthesize mesostructured WO3/C composite as nonprecious-metal anode catalyst in PEMFC. Chem. Asian J. 2013, 8, 429–436.

    Article  CAS  Google Scholar 

  22. Cui, X. Z.; Shi, J. L.; Wang, Y. X.; Chen, Y.; Zhang, L. X.; Hua, Z. L. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells. ChemSusChem 2014, 7, 135–145.

    Article  CAS  Google Scholar 

  23. Olu, P. Y.; Ohnishi, T.; Ayato, Y.; Mochizuki, D.; Sugimoto, W. Insights into the enhanced tolerance to carbon monoxide on model tungsten trioxide-decorated polycrystalline platinum electrode. Electrochem. Commun. 2016, 71, 69–72.

    Article  CAS  Google Scholar 

  24. Song, J. J.; Huang, Z. F.; Pan, L.; Zou, J. J.; Zhang, X. W.; Wang, L. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst. ACS Catal. 2015, 5, 6594–6599.

    Article  CAS  Google Scholar 

  25. Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356–7361.

    Article  CAS  Google Scholar 

  26. Kwon, K.; Jin, S. A.; Lee, K. H.; You, D. J.; Pak, C. Performance enhancement of Pd-based hydrogen oxidation catalysts using tungsten oxide. Catal. Today 2014, 232, 175–178.

    Article  CAS  Google Scholar 

  27. Wang, Y.; Wang, X. X.; Xu, Y. H.; Chen, T.; Liu, M. L.; Niu, F. S.; Wei, S.; Liu, J. Q. Simultaneous synthesis of WO3−x quantum dots and bundle-like nanowires using a one-pot template-free solvothermal strategy and their versatile applications. Small 2017, 13, 1603689.

    Article  Google Scholar 

  28. Zhu, W. Y.; Liu, J. C.; Yu, S. Y.; Zhou, Y.; Yan, X. L. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. J. Hazard. Mater. 2016, 318, 407–416.

    Article  CAS  Google Scholar 

  29. Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434–9443.

    Article  CAS  Google Scholar 

  30. Ahn, S. H.; Klein, M. J.; Manthiram, A. 1D Co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 2017, 7, 1601979.

    Article  Google Scholar 

  31. Tan, Q.; Shu, C. Y.; Abbott, J.; Zhao, Q. F.; Liu, L. T.; Qu, T.; Chen, Y. Z.; Zhu, H. Y.; Liu, Y. N.; Wu, G. Highly dispersed Pd-CeO2 nanoparticles supported on N-doped core-shell structured mesoporous carbon for methanol oxidation in alkaline media. ACS Catal. 2019, 9, 6362–6371.

    Article  CAS  Google Scholar 

  32. Kucherov, A. V.; Shelef, M. An in situ ESR study of Pd/H-ZSM-5 interaction with different adsorbents. Catal. Lett. 2001, 75, 19–24.

    Article  CAS  Google Scholar 

  33. Lu, Y.; Wang, W.; Chen, X. W.; Zhang, Y. H.; Han, Y. C.; Cheng, Y.; Chen, X. J.; Liu, K.; Wang, Y. Y.; Zhang, Q. B. et al. Composition optimized trimetallic PtNiRu dendritic nanostructures as versatile and active electrocatalysts for alcohol oxidation. Nano Res. 2019, 12, 651–657.

    Article  CAS  Google Scholar 

  34. Yuan, X. L.; Jiang, B.; Cao, M. H.; Zhang, C. Y.; Liu, X. Z.; Zhang, Q. H.; Lyu, F. L.; Gu, L.; Zhang, Q. Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction. Nano Res. 2020, 13, 265–272.

    Article  CAS  Google Scholar 

  35. Zeng, Y. X.; Lai, Z. Z.; Han, Y.; Zhang, H. Z.; Xie, S. L.; Lu, X. H. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 2018, 30, 1802396.

    Article  Google Scholar 

  36. Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462.

    Article  CAS  Google Scholar 

  37. Xu, Y. F.; Zhang, C.; Zhang, L. X.; Zhang, X. H.; Yao, H. L.; Shi, J. L. Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance. Energy Environ. Sci. 2016, 9, 2410–2417.

    Article  CAS  Google Scholar 

  38. Zhou, R.; Lin, X. P.; Xue, D. Y.; Zong, F. Y.; Zhang, J. M.; Duan, X. C.; Li, Q. H.; Wang, T. H. Enhanced H2 gas sensing properties by Pd-loaded urchin-like W18O49 hierarchical nanostructures. Sens. Actuators B Chem. 2018, 260, 900–907.

    Article  CAS  Google Scholar 

  39. Tao, L.; Shi, Y. L.; Huang, Y. C.; Chen, R.; Zhang, Y. Q.; Huo, J.; Zou, Y. Q.; Yu, G.; Luo, J.; Dong, C. L. et al. Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation. Nano Energy 2018, 53, 604–612.

    Article  CAS  Google Scholar 

  40. Cui, X. Z.; Zhu, Y.; Hua, Z. L.; Feng, J. W.; Liu, Z. W.; Chen, L. S.; Shi, J. L. SnO2 nanocrystal-decorated mesoporous ZSM-5 as a precious metal-free electrode catalyst for methanol oxidation. Energy Environ. Sci. 2015, 8, 1261–1266.

    Article  CAS  Google Scholar 

  41. Shi, J. L. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev. 2013, 113, 2139–2181.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged the support from the Natural Science Foundation of Shanghai (No. 19ZR1479400), the State Key Laboratory for Modication of Chemical Fibers and Polymer Materials, Donghua University (No. KF1818), and the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangzhi Cui or Jianlin Shi.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Tian, H., Cui, X. et al. Dual synergetic catalytic effects boost hydrogen electric oxidation performance of Pd/W18O49. Nano Res. 14, 2441–2450 (2021). https://doi.org/10.1007/s12274-020-3248-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3248-0

Keywords

Navigation