Skip to main content
Log in

A dual-functional poly(vinyl alcohol)/poly(lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li-S batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Despite the high theoretical specific capacity, the main challenges of rechargeable lithium-sulfur (Li-S) batteries, including the unceasing shuttle of soluble lithium polysulfides (LiPSs) and severe Li corrosion, seriously hinder their commercial and practical applications. Herein, a bifunctional polyvinyl alcohol/poly(lithium acrylate) (C-PVA/PAA-Li) composite nanofiber separator is developed to address the main challenges in Li-S batteries by simultaneously allowing rapid lithium ion transport and ionic shielding of polysulfides. The C-PVA/PAA-Li composite nanofiber membrane is prepared via the facile electrospinning strategy, followed by thermal crosslinking and in-situ lithiation processes. Differing from the conventional Celgard-based coating methods accompanied by impaired lithium ion transport efficiency, the C-PVA/PAA-Li composite nanofiber membrane possesses well-developed porous structures and high ionic conductivity, thus synergistically reducing the charge transfer resistance and inhibiting the growth of lithium dendrites. The resulting Li-S batteries exhibit an ultra-low fading rate of 0.08% per cycle after 400 cycles at 0.2 C, and a capacity of 633 mAhg−1 at a high current density of 3 C. This study presents an inspiring and promising strategy to fabricate emerging dual-functional separators, which paves the pathway for the practical implementation of ultra-stable and reliable Li-S battery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

    Article  Google Scholar 

  2. Ye, Y. F.; Song, M. K.; Xu, Y.; Nie, K. Q.; Liu, Y. S.; Feng, J.; Sun, X. H.; Cairns, E. J.; Zhang, Y. G.; Guo, J. H. Lithium nitrate: A double-edged sword in the rechargeable lithium-sulfur cell. Energy Storage Mater. 2019, 16, 498–504.

    Article  Google Scholar 

  3. Pei, F.; Lin, L. L.; Fu, A.; Mo, S. G.; Ou, D. H.; Fang, X. L.; Zheng, N. F. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries. Joule 2018, 2, 323–336.

    Article  CAS  Google Scholar 

  4. Yan, C. Y.; Zhu, P.; Jia, H.; Zhu, J. D.; Selvan, R. K.; Li, Y.; Dong, X.; Du, Z.; Angunawela, I.; Wu, N. Q. et al. High-performance 3-D fiber network composite electrolyte enabled with Li-ion conducting nanofibers and amorphous PEO-based cross-linked polymer for ambient all-solid-state lithium-metal batteries. Adv. Fiber Mater. 2019, 1, 46–60.

    Article  Google Scholar 

  5. Zhu, J. D.; Zhu, P.; Yan, C. Y.; Dong, X.; Zhang, X. W. Recent progress in polymer materials for advanced lithium-sulfur batteries. Prog. Polym. Sci. 2019, 90, 118–163.

    Article  CAS  Google Scholar 

  6. Su, D. W.; Zhou, D.; Wang, C. Y.; Wang, G. X. Toward high performance lithium-sulfur batteries based on Li2S cathodes and beyond: Status, challenges, and perspectives. Adv. Funct. Mater. 2018, 28, 1800154.

    Article  Google Scholar 

  7. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

    Article  Google Scholar 

  8. Hou, T. Z.; Xu, W. T.; Chen, X.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Lithium bond chemistry in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2017, 56, 8178–8182.

    Article  CAS  Google Scholar 

  9. Li, Z.; Han, Y.; Wei, J. H.; Wang, W. Q.; Cao, T. T.; Xu, S. M.; Xu, Z. H. Suppressing shuttle effect using Janus cation exchange membrane for high-performance lithium-sulfur battery separator. ACS Appl. Mater. Interfaces 2017, 9, 44776–44781.

    Article  CAS  Google Scholar 

  10. Su, C. C.; He, M. N.; Amine, R.; Chen, Z. H.; Amine, K. The relationship between the relative solvating power of electrolytes and shuttling effect of lithium polysulfides in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 12033–12036.

    Article  CAS  Google Scholar 

  11. Song, Y. Z.; Cai, W. L.; Kong, L.; Cai, J. S.; Zhang, Q.; Sun, J. Y. Rationalizing electrocatalysis of Li-S chemistry by mediator design: Progress and prospects. Adv. Energy Mater. 2020, 10, 1901075.

    Article  CAS  Google Scholar 

  12. Shi, N. X.; Xi, B. J.; Feng, Z. Y.; Wu, F. F.; Wei, D. H.; Liu, J.; Xiong, S. L. Insight into different-microstructured ZnO/graphene-functionalized separators affecting the performance of lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 4009–4018.

    Article  CAS  Google Scholar 

  13. Cui, J. Y.; Li, Z. H.; Li, J. B.; Li, S.; Liu, J.; Shao, M. F.; Wei, M. An atomic-confined-space separator for high performance lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 1896–1903.

    Article  CAS  Google Scholar 

  14. Lei, T. Y.; Chen, W.; Lv, W. Q.; Huang, J. W.; Zhu, J.; Chu, J. W.; Yan, C. Y.; Wu, C. Y.; Yan, Y. C.; He, W. D. et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091–2104.

    Article  CAS  Google Scholar 

  15. Jin, C. B.; Zhang, W. K.; Zhuang, Z. Z.; Wang, J. G.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; Zhang, J.; Tao, X. Y. Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 632–640.

    Article  CAS  Google Scholar 

  16. Li, G. R.; Wang, S.; Zhang, Y. N.; Li, M.; Chen, Z. W.; Lu, J. Revisiting the role of polysulfides in lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705590.

    Article  Google Scholar 

  17. Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

    Article  CAS  Google Scholar 

  18. Yu, J. J.; Liu, S. W.; Duan, G. G.; Fang, H.; Hou, H. Q. Dense and thin coating of gel polymer electrolyte on sulfur cathode toward high performance Li-sulfur battery. Compos. Commun. 2020, 19, 239–245.

    Article  Google Scholar 

  19. Chen, W.; Lei, T. Y.; Lv, W. Q.; Hu, Y.; Yan, Y. C.; Jiao, Y.; He, W. D.; Li, Z. H.; Yan, C. L.; Xiong, J. Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery. Adv. Mater. 2018, 30, 1804084.

    Article  Google Scholar 

  20. Rana, M.; Li, M.; Huang, X.; Luo, B.; Gentle, I.; Knibbe, R. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J. Mater. Chem. A 2019, 7, 6596–6615.

    Article  CAS  Google Scholar 

  21. Zhu, X. B.; Ouyang, Y.; Chen, J. W.; Zhu, X. G.; Luo, X.; Lai, F. L.; Zhang, H.; Miao, Y. E.; Liu, T. X. In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 3253–3263.

    Article  CAS  Google Scholar 

  22. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

    Article  Google Scholar 

  23. Fu, X. W.; Wang, Y.; Scudiero, L.; Zhong, W. H. A polymeric nanocomposite interlayer as ion-transport-regulator for trapping polysulfides and stabilizing lithium metal. Energy Storage Mater. 2018, 15, 447–457.

    Article  Google Scholar 

  24. Wu, F.; Zhao, S. Y.; Chen, L.; Lu, Y.; Su, Y. F.; Jia, Y. N.; Bao, L. Y.; Wang, J.; Chen, S.; Chen, R. J. Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries. Energy Storage Mater. 2018, 14, 383–391.

    Article  Google Scholar 

  25. Wang, W.; Liao, C.; Liew, K. M.; Chen, Z. H.; Song, L.; Kan, Y. C.; Hu, Y. A 3D flexible and robust HAPs/PVA separator prepared by a freezing-drying method for safe lithium metal batteries. J. Mater. Chem. A 2019, 7, 6859–6868.

    Article  CAS  Google Scholar 

  26. Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Wei, F.; Zhang, Q. Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. Small 2014, 10, 4257–4263.

    Article  CAS  Google Scholar 

  27. Song, J. J.; Zhang, C. Y.; Guo, X.; Zhang, J. Q.; Luo, L. Q.; Liu, H.; Wang, F. Y.; Wang, G. X. Entrapping polysulfides by using ultrathin hollow carbon sphere-functionalized separators in high-rate lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 16610–16616.

    Article  CAS  Google Scholar 

  28. Zhang, L. L.; Chen, X.; Wan, F.; Niu, Z. Q.; Wang, Y. J.; Zhang, Q.; Chen, J. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries. ACS Nano 2018, 12, 9578–9586.

    Article  CAS  Google Scholar 

  29. Li, J. H.; Wei, W.; Meng, L. J. Liquid-phase exfoliated-graphene-supporting nanostructural sulfur as high-performance lithium-sulfur batteries cathode. Compos. Commun. 2019, 15, 149–154.

    Article  Google Scholar 

  30. Shi, H. F.; Lv, W.; Zhang, C.; Wang, D. W.; Ling, G. W.; He, Y. B.; Kang, F. Y.; Yang, Q. H. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: Confining, trapping, blocking, and breaking up. Adv. Funct. Mater. 2018, 28, 1800508.

    Article  Google Scholar 

  31. Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682.

    Article  Google Scholar 

  32. Zuo, X. T.; Zhen, M. M.; Wang, C. Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Res. 2019, 12, 829–836.

    Article  CAS  Google Scholar 

  33. Ghazi, Z. A.; Zhu, L. Y.; Wang, H.; Naeem, A.; Khattak, A. M.; Liang, B.; Khan, N. A.; Wei, Z. X.; Li, L. S.; Tang, Z. Y. Efficient polysulfide chemisorption in covalent organic frameworks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2016, 6, 1601250.

    Article  Google Scholar 

  34. Liu, B.; Huang, S. Z.; Kong, D. Z.; Hu, J. P.; Yang, H. Y. Bifunctional NiCo2S4 catalysts supported on a carbon textile interlayer for ultra-stable Li-S battery. J. Mater. Chem. A 2019, 7, 7604–7613.

    Article  CAS  Google Scholar 

  35. Luo, X.; Lu, X. B.; Zhou, G. Y.; Zhao, X. Y.; Ouyang, Y.; Zhu, X. B.; Miao, Y. E.; Liu, T. X. Ion-selective polyamide acid nanofiber separators for high-rate and stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 42198–42206.

    Article  CAS  Google Scholar 

  36. Zhou, J.; Wang, Y. F.; Zhang, C. Synthesis and electrochemical performance of core-shell NiCo2S4@nitrogen, sulfur dual-doped carbon composites via confined sulfidation strategy in a polydopamine nanoreactor. Compos. Commun. 2019, 12, 74–79.

    Article  Google Scholar 

  37. Fan, Y.; Yang, Z.; Hua, W. X.; Liu, D.; Tao, T.; Rahman, M.; Lei, W. W.; Huang, S. M.; Chen, Y. Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602380.

    Article  Google Scholar 

  38. Wang, Z.; Feng, M.; Sun, H.; Li, G. R.; Fu, Q.; Li, H. B.; Liu, J.; Sun, L. Q.; Mauger, A.; Julien, C. M. et al. Constructing metal-free and cost-effective multifunctional separator for high-performance lithium-sulfur batteries. Nano Energy 2019, 59, 390–398.

    Article  CAS  Google Scholar 

  39. Dong, Q.; Shen, R. P.; Li, C. P.; Gan, R. Y.; Ma, X. T.; Wang, J. C.; Li, J.; Wei, Z. D. Construction of soft base tongs on separator to grasp polysulfides from shuttling in lithium-sulfur batteries. Small 2018, 14, 1804277.

    Article  Google Scholar 

  40. Cheng, Z. B.; Pan, H.; Chen, J. Q.; Meng, X. P.; Wang, R. H. Separator modified by cobalt-embedded carbon nanosheets enabling chemisorption and catalytic effects of polysulfides for high-energy-density lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901609.

    Article  Google Scholar 

  41. Kim, D. S.; Park, H. B.; Rhim, J. W.; Lee, Y. M. Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. J. Membr. Sci. 2004, 240, 37–48.

    Article  CAS  Google Scholar 

  42. Zhu, Y. S.; Wang, X. J.; Hou, Y. Y.; Gao, X. W.; Liu, L. L.; Wu, Y. P.; Shimizu, M. A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochim. Acta 2013, 87, 113–118.

    Article  CAS  Google Scholar 

  43. Jiang, K.; Gao, S.; Wang, R. X.; Jiang, M.; Han, J.; Gu, T. T.; Liu, M. Y.; Cheng, S. J.; Wang, K. L. Lithium sulfonate/carboxylate-anchored polyvinyl alcohol separators for lithium sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 18310–18315.

    Article  CAS  Google Scholar 

  44. Liao, J. B.; Liu, Z.; Wang, J. L.; Ye, Z. B. Cost-effective water-soluble poly(vinyl alcohol) as a functional binder for high-sulfur-loading cathodes in lithium-sulfur batteries. ACS Omega 2020, 5, 8272–8282.

    Article  CAS  Google Scholar 

  45. Hays, K. A.; Ruther, R. E.; Kukay, A. J.; Cao, P. F.; Saito, T.; Wood III, D. L.; Li, J. L. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes? J. Power Sources 2018, 384, 136–144.

    Article  CAS  Google Scholar 

  46. Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem., Int. Ed. 2018, 57, 1505–1509.

    Article  CAS  Google Scholar 

  47. Dai, J. H.; Shi, C.; Li, C.; Shen, X.; Peng, L. Q.; Wu, D. Z.; Sun, D. H.; Zhang, P.; Zhao, J. B. A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine-ceramic composite modification of polyolefin membranes. Energy Environ. Sci. 2016, 9, 3252–3261.

    Article  CAS  Google Scholar 

  48. Xiao, W.; Zhang, K. Y.; Liu, J. G.; Yan, C. W. Preparation of poly(vinyl alcohol)-based separator with pore-forming additive for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 2017, 28, 17516–17525.

    Article  CAS  Google Scholar 

  49. Cao, Y.; Liu, C.; Wang, M. D.; Yang, H.; Liu, S.; Wang, H. L.; Yang, Z. X.; Pan, F. S.; Jiang, Z. Y.; Sun, J. Lithiation of covalent organic framework nanosheets facilitating lithium-ion transport in lithium-sulfur batteries. Energy Storage Mater. 2020, 29, 207–215.

    Article  Google Scholar 

  50. Song, J. X.; Zhou, M. J.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D. H.; Yu, Z. X.; Regula, M.; Wang, D. H. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 5904–5910.

    Article  CAS  Google Scholar 

  51. Yang, Y. F.; Zhang, J. P. Highly stable lithium-sulfur batteries based on laponite nanosheet-coated celgard separators. Adv. Energy Mater. 2018, 8, 1801778.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (No. 21604010), the Natural Science Foundation of Shanghai (No. 18ZR1401600), “Chenguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (No. 16CG39), and Shanghai Scientific and Technological Innovation Project (No. 18JC1410600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-E Miao.

Electronic Supplementary Material

12274_2020_3213_MOESM1_ESM.pdf

A dual-functional poly(vinyl alcohol)/poly(lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li-S batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Wang, J., Zhu, X. et al. A dual-functional poly(vinyl alcohol)/poly(lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li-S batteries. Nano Res. 14, 1541–1550 (2021). https://doi.org/10.1007/s12274-020-3213-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3213-y

Keywords

Navigation