Skip to main content
Log in

Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oxygen vacancy (Vö) is important in the modification of electrode for rechargeable batteries. However, due to the scarcity of suitable preparation strategy with controllable Vö incorporation, the impact of Vö concentration on the electrochemical performances remains unclear. Thus, in this work, Vö-V2O5-PEDOT (VöVP) with tunable Vö concentration is achieved via a spontaneous polymerization strategy, with the capability of mass-production. The introduction of poly(2,3-dihydrothieno-1,4-dioxin) (PEDOT) not only leads to the formation of Vö in V2O5, but it also results in a larger interlayer spacing. The as-prepared Vö-V2O5-PEDOT-20.3% with Vö concentration of 20.3% (denoted as VöVP-20) is able to exhibit high capacity of 449 mAh·g−1 at current density of 0.2 A·g−1, with excellent cyclic performance of 94.3% after 6,000 cycles. It is shown in the theoretical calculations that excessive Vö in V2O5 will lead to an increase in the band gap, which inhibits the electrochemical kinetics and charge conductivity. This is further demonstrated in the experimental results as the electrochemical performance starts to decline when Vö concentration increases beyond 20.3%. Thus, based on this work, scalable fabrication of high-performance electrode with tunable Vö concentration can be achieved with the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    CAS  Google Scholar 

  2. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    CAS  Google Scholar 

  3. Balogun, M. S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823–2851.

    CAS  Google Scholar 

  4. Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

    CAS  Google Scholar 

  5. Xu, W. W.; Wang, Y. Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 2019, 11, 90.

    CAS  Google Scholar 

  6. Fang, G. Z; Zhou, J.; Pan, A. Q; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.

    CAS  Google Scholar 

  7. Liu, P. G.; Gao, Y.; Tan, Y. Y.; Liu, W. F.; Huang, Y. P.; Yan, J.; Liu, K. Y. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 2019, 12, 2835–2841.

    CAS  Google Scholar 

  8. Zhang, Y. M.; Li, H. N.; Huang, S. Z.; Fan, S.; Sun, L. N.; Tian, B. B.; Chen, F. M.; Wang, Y.; Shi, Y. M.; Yang, H. Y. Rechargeable aqueous zinc-ion batteries in MgSO4/ZnSO4 hybrid electrolytes. Nano-Micro Lett. 2020, 12, 60.

    CAS  Google Scholar 

  9. Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.

    Google Scholar 

  10. He, P.; Zhang, G. B.; Liao, X. B.; Yan, M. Y.; Xu, X.; An, Q. Y.; Liu, J.; Mai, L. Q. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 2018, 8, 1702463.

    Google Scholar 

  11. Wang, X. Y.; Ma, L. W.; Zhang, P. C.; Wang, H. Y.; Li, S.; Ji, S. J.; Wen, Z. S.; Sun, J. C. Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability. Appl. Surf. Sci. 2020, 502, 144207.

    CAS  Google Scholar 

  12. Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. V2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res. 2020, 13, 215–224

    CAS  Google Scholar 

  13. Sun, W.; Wang, F.; Hou, S.; Yang, C. Y.; Fan, X. L.; Ma, Z. H.; Gao, T.; Han, F. D.; Hu, R. Z.; Zhu, M. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778.

    CAS  Google Scholar 

  14. Ren, H.; Zhao, J.; Yang, L.; Liang, Q. H.; Madhavi, S.; Yan, Q. Y. Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Res. 2019, 12, 1347–1353.

    CAS  Google Scholar 

  15. Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 5, 1400930.

    Google Scholar 

  16. Liu, Z.; Pulletikurthi, G.; Endres, F. A Prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 12158–12164.

    CAS  Google Scholar 

  17. Zhao, Q.; Huang, W. W.; Luo, Z. Q.; Liu, L. J.; Lu, Y.; Li, Y. X.; Li, L.; Hu, J. Y.; Ma, H.; Chen, J. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 2018, 4, eaao1761.

    Google Scholar 

  18. Kundu, D.; Oberholzer, P.; Glaros, C.; Bouzid, A.; Tervoort, E.; Pasquarello, A.; Niederberger, M. Organic cathode for aqueous Zn-ion batteries: Taming a unique phase evolution toward stable electrochemical cycling. Chem. Mater. 2018, 30, 3874–3881.

    CAS  Google Scholar 

  19. Li, G. L.; Yang, Z.; Jiang, Y.; Jin, C. H.; Huang, W.; Ding, X. L.; Huang, Y. H. Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy 2016, 25, 211–217.

    CAS  Google Scholar 

  20. Li, G. L.; Yang, Z.; Jiang, Y.; Zhang, W. X.; Huang, Y. H. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J. Power Sources 2016, 308, 52–57.

    CAS  Google Scholar 

  21. Chae, M. S.; Heo, J. W.; Lim, S. C.; Hong, S. T. Electrochemical zinc-ion intercalation properties and crystal structures of ZnMo6S8 and Zn2Mo6S8 Chevrel phases in aqueous electrolytes. Inorg. Chem. 2016, 55, 3294–3301.

    CAS  Google Scholar 

  22. Cheng, Y. W.; Luo, L. L.; Zhong, L.; Chen, J. Z.; Li, B.; Wang, W.; Mao, S. X.; Wang, C. M.; Sprenkle, V. L.; Li, G. S. et al. Highly reversible zinc-ion intercalation into Chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 13673–13677.

    CAS  Google Scholar 

  23. Wan, F.; Niu, Z. Q. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 16358–16367.

    Google Scholar 

  24. Wang, X. Y.; Ma, L. W.; Sun, J. C. Vanadium pentoxide nanosheets in-situ spaced with acetylene black as cathodes for high-performance zinc-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 41297–41303.

    CAS  Google Scholar 

  25. Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

    CAS  Google Scholar 

  26. Pang, Q.; He, W.; Zhao, H. N.; Yu, X. Y.; Wei, Y. J.; Tian, Y.; Xing, M. M.; Fu, Y.; Luo, X. X. Hierarchical aluminum vanadate microspheres with structural water: High-performance cathode materials for aqueous rechargeable zinc batteries. ChemPlusChem 2020, 85, 1–8.

    Google Scholar 

  27. Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

    CAS  Google Scholar 

  28. Yan, M. Y.; He, P.; Chen, Y.; Wang, S. Y.; Wei, Q. L.; Zhao, K. N.; Xu, X.; An, Q. Y.; Shuang, Y.; Shao, Y. Y. et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 2018, 30, 1703725.

    Google Scholar 

  29. Pang, Q.; Sun, C. L.; Yu, Y. H.; Zhao, K. N.; Zhang, Z. Y.; Voyles, P. M.; Chen, G.; Wei, Y. J.; Wang, X. D. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 2018, 8, 1800144.

    Google Scholar 

  30. Liao, M.; Wang, J. W.; Ye, L.; Sun, H.; Wen, Y. Z.; Wang, C.; Sun, X. M.; Wang, B. J.; Peng, H. S. A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode. Angew. Chem., Int. Ed. 2020, 59, 2273–2278.

    CAS  Google Scholar 

  31. Bin, D.; Huo, W. C.; Yuan, Y. B.; Huang, J. H.; Liu, Y.; Zhang, Y. X.; Dong, F.; Wang, Y. G.; Xia, Y. Y. Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery. Chem 2020, 6, 968–984.

    CAS  Google Scholar 

  32. Liu, F.; Chen, Z. X.; Fang, G. Z.; Wang, Z. Q.; Cai, Y. S.; Tang, B. Y.; Zhou, J.; Liang, S. Q. V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 2019, 11, 25.

    CAS  Google Scholar 

  33. Zhao, J.; Ren, H.; Liang, Q. H.; Yuan, D.; Xi, S. B.; Wu, C.; Manalastas, W. Jr.; Ma, J. M.; Fang, W.; Zheng, Y. et al. Highperformance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode. Nano Energy 2019, 62, 94–102.

    CAS  Google Scholar 

  34. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    CAS  Google Scholar 

  35. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  36. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the Projector-Augmented-Wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  37. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    CAS  Google Scholar 

  38. Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  39. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  40. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  41. Guo, C. X.; Sun, K.; Ouyang, J. Y.; Lu, X. M. Layered V2O5/PEDOT nanowires and ultrathin nanobelts fabricated with a silk reelinglike process. Chem. Mater. 2015, 27, 5813–5819.

    CAS  Google Scholar 

  42. Bi, W. C.; Wu, Y. J.; Liu, C. F.; Wang, J. C.; Du, Y. C.; Gao, G. H.; Wu, G. M.; Cao, G. Z. Gradient oxygen vacancies in V2O5/PEDOT nanocables for high-performance supercapacitors. ACS Appl. Energy Mater. 2019, 2, 668–677.

    CAS  Google Scholar 

  43. He, P.; Quan, Y. L.; Xu, X.; Yan, M. Y.; Yang, W.; An, Q. Y.; He, L.; Mai, L. Q. High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 2017, 13, 1702551.

    Google Scholar 

  44. Alfaruqi, M. H.; Mathew, V.; Song, J. J.; Kim, S.; Islam, S.; Pham, D. T.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z. L. et al. Electrochemical zinc intercalation in lithium vanadium oxide: A high-capacity zinc-ion battery cathode. Chem. Mater. 2017, 29, 1684–1694.

    CAS  Google Scholar 

  45. Sambandam, B.; Soundharrajan, V.; Kim, S.; Alfaruqi, M. H.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. K2V6O16·2.7H2O nanorod cathode: An advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. J. Mater. Chem. A 2018, 6, 15530–15539.

    CAS  Google Scholar 

  46. Guo, X.; Fang, G. Z.; Zhang, W. Y.; Zhou, J.; Shan, L. T.; Wang, L. B.; Wang, C.; Lin, T. Q.; Tang, Y.; Liang, S. Q. Mechanistic insights of Zn2+ storage in sodium vanadates. Adv. Energy Mater. 2018, 8, 1801819.

    Google Scholar 

  47. Soundharrajan, V.; Sambandam, B.; Kim, S.; Alfaruqi, M. H.; Putro, D. Y.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. Na2V6O16·3H2O barnesite nanorod: An open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 2018, 18, 2402–2410.

    CAS  Google Scholar 

  48. Chao, D. L.; Zhou, W. H.; Ye, C.; Zhang, Q. H.; Chen, Y. G.; Gu, L.; Davey, K.; Qiao, S. Z. An electrolytic Zn-MnO2 battery for highvoltage and scalable energy storage. Angew. Chem., Int. Ed. 2019, 58, 7823–7828.

    CAS  Google Scholar 

  49. Chao, D. L.; Ye, C.; Xie, F. X.; Zhou, W. H.; Zhang, Q. H.; Gu, Q. F.; Davey, K.; Gu, L.; Qiao, S. Z. Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 2020, 32, 2001894.

    CAS  Google Scholar 

  50. Zhang, N.; Jia, M.; Dong, Y.; Wang, Y. Y.; Xu, J. Z.; Liu, Y. C.; Jiao, L. F.; Cheng, F. Y. Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Adv. Funct. Mater. 2019, 29, 1807331.

    Google Scholar 

  51. Li, Y. K.; Huang, Z. M.; Kalambate, P. K.; Zhong, Y.; Huang, Z. M.; Xie, M. L.; Shen, Y.; Huang, Y. H. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 2019, 60, 752–759.

    CAS  Google Scholar 

  52. Zhang, N.; Dong, Y.; Jia, M.; Bian, X.; Wang, Y. Y.; Qiu, M. D.; Xu, J. Z.; Liu, Y. C.; Jiao, L. F.; Cheng, F. Y. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 2018, 3, 1366–1372.

    CAS  Google Scholar 

  53. Li, R.; Zhang, H. M.; Zheng, Q.; Li, X. F. Porous V2O5 yolk-shell microspheres for zinc ion battery cathodes: Activation responsible for enhanced capacity and rate performance. J. Mater. Chem. A 2020, 8, 5186–5193.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21905037), China Postdoctoral Science Foundation (No. 2020M670719) and the Fundamental Research Funds for the Central Universities (No. 3132019328).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyu Wang or Juncai Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Wang, X. & Sun, J. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 14, 754–761 (2021). https://doi.org/10.1007/s12274-020-3109-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3109-x

Keywords

Navigation