Skip to main content
Log in

Flexible Au micro-array electrode with atomic-scale Au thin film for enhanced ethanol oxidation reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The catalysis of Au thin film could be improved by fabrication of array structures in large area. In this work, nanoimprint lithography has been developed to fabricate flexible Au micro-array (MA) electrodes with ∼ 100% coverage. Advanced electron microscopy characterisations have directly visualised the atomic-scale three-dimensional (3D) nanostructures with a maximum depth of 6 atomic layers. In-situ observation unveils the crystal growth in the form of twinning. High double layer capacitance brings about large number of active sites on the Au thin film and has a logarithmic relationship with mesh grade. Electrochemistry testing shows that the Au MAs perform much better ethanol oxidation reaction than the planar sample; MAs with higher mesh grade have a greater active site utilisation ratio (ASUR), which is important to build electrochemical double layer for efficient charge transfer. Further improvement on ASUR is expected for greater electrocatalytic performance and potential application in direct ethanol fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armaroli, N.; Balzani, V. Towards an electricity-powered world. Energy Environ. Sci. 2011, 4, 3193–3222.

    Article  Google Scholar 

  2. Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE 2012, 100, 1518–1534.

    Article  CAS  Google Scholar 

  3. Kamarudin, M. Z. F.; Kamarudin, S. K.; Masdar, M. S.; Daud, W. R. W. Review: Direct ethanol fuel cells. Int. J. Hydrogen Energy 2013, 38, 9438–9453.

    Article  CAS  Google Scholar 

  4. Hoogers, G. Fuel Cell Technology Handbook; CRC Press: Boca Raton, 2002.

    Book  Google Scholar 

  5. Haruta, M. Catalysis: Gold rush. Nature 2005, 437, 1098–1099.

    Article  CAS  Google Scholar 

  6. Rodriguez, P.; Kwon, Y.; Koper, M. T. M. The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nat. Chem. 2012, 4, 177–182.

    Article  CAS  Google Scholar 

  7. Rousseau, S.; Coutanceau, C.; Lamy, C.; Léger, J. M. Direct ethanol fuel cell (DEFC): Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J. Power Sources 2006, 158, 18–24.

    Article  CAS  Google Scholar 

  8. Shen, S. Y.; Zhao, T. S.; Xu, J. B.; Li, Y. S. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J. Power Sources 2010, 195, 1001–1006.

    Article  CAS  Google Scholar 

  9. Brooks, R. R. Noble Metals and Biological Systems: Their Role in Medicine, Mineral Exploration, and the Environment; CRC Press: Boca Raton, 1992.

    Google Scholar 

  10. Baker, T. A.; Liu, X. Y.; Friend, C. M. The mystery of gold’s chemical activity: Local bonding, morphology and reactivity of atomic oxygen. Phys. Chem. Chem. Phys. 2011, 13, 34–46.

    Article  CAS  Google Scholar 

  11. Rodriguez, P.; Koper, M. T. M. Electrocatalysis on gold. Phys. Chem. Chem. Phys. 2014, 16, 13583–13594.

    Article  CAS  Google Scholar 

  12. Liu, H. C.; Iglesia, E. Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures. J. Phys. Chem. B 2005, 109, 2155–2163.

    Article  CAS  Google Scholar 

  13. Liang, Z. X.; Zhao, T. S.; Xu, J. B.; Zhu, L. D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 2009, 54, 2203–2208.

    Article  CAS  Google Scholar 

  14. Cao, X.; Li, C. J.; Lu, Y.; Zhang, B. W.; Wu, Y.; Liu, Q.; Wu, J. S.; Teng, J.; Yan, W. G.; Huang, Y. Z. Catalysis of Au nano-pyramids formed across the surfaces of ordered Au nano-ring arrays. J. Catal. 2019, 377, 389–399.

    Article  CAS  Google Scholar 

  15. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 1996, 272, 85–87.

    Article  CAS  Google Scholar 

  16. Gates, B. D.; Xu, Q. B.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 2005, 105, 1171–1196.

    Article  CAS  Google Scholar 

  17. Tucher, N.; Höhn, O.; Hauser, H.; Müller, C.; Bläsi, B. Characterizing the degradation of PDMS stamps in nanoimprint lithography. Microelectron. Eng. 2017, 180, 40–44.

    Article  CAS  Google Scholar 

  18. Cao, X.; Li, C. J.; Peng, D. D.; Lu, Y.; Huang, K.; Wu, J. S.; Zhao, C. W.; Huang, Y. Z. Highly strained Au nanoparticles for improved electrocatalysis of ethanol oxidation reaction. J. Phys. Chem. Lett. 2020, 11, 3005–3013.

    Article  CAS  Google Scholar 

  19. Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollár, J. The surface energy of metals. Surf. Sci. 1998, 411, 186–202.

    Article  CAS  Google Scholar 

  20. Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38, 231–252.

    Article  Google Scholar 

  21. Jia, B. P.; Gao, L. Growth of well-defined cubic hematite single crystals: Oriented aggregation and ostwald ripening. Cryst. Growth Des. 2008, 8, 1372–1376.

    Article  CAS  Google Scholar 

  22. Li, C. J.; Cao, X.; Li, W. H.; Zhang, B. W.; Xiao, L. Q. Co-synthesis of CuO-ZnO nanoflowers by low voltage liquid plasma discharge with brass electrode. J. Alloys Compd. 2019, 773, 762–769.

    Article  CAS  Google Scholar 

  23. Li, C. J.; Rao, Y. H.; Zhang, B. W.; Huang, K.; Cao, X.; Peng, D. D.; Wu, J. S.; Xiao, L. Q.; Huang, Y. Z. Extraordinary catalysis induced by titanium foil cathode plasma for degradation of water pollutant. Chemosphere 2019, 214, 341–348.

    Article  CAS  Google Scholar 

  24. Li, C. J.; Zhang, B. W.; Li, Y.; Hao, S. J.; Cao, X.; Yang, G.; Wu, J. S.; Huang, Y. Z. Self-assembled Cu-Ni bimetal oxide 3D in-plane epitaxial structures for highly efficient oxygen evolution reaction. Appl. Catal. B: Environ. 2019, 244, 56–62.

    Article  CAS  Google Scholar 

  25. Rao, Y.; Cao, X.; Li, C.; Xiao, L. Bifunctional copper cathode induced oxidation of glycerol with liquid plasma discharge. Sep. Purif. Technol. 2019, 220, 328–333.

    Article  CAS  Google Scholar 

  26. Wang, Y.; Zou, S. Z.; Cai, W. B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysts 2015, 5, 1507–1534.

    Article  CAS  Google Scholar 

  27. Zhao, Y. Z.; Li, X. M.; Schechter, J. M.; Yang, Y. A. Revisiting the oxidation peak in the cathodic scan of the cyclic voltammogram of alcohol oxidation on noble metal electrodes. RSC Adv. 2016, 6, 5384–5390.

    Article  CAS  Google Scholar 

  28. Yao, Y. F.; Xu, Z.; Cheng, F.; Li, W. C.; Cui, P. X.; Xu, G. Z.; Xu, S.; Wang, P.; Sheng, G. D.; Yan, Y. D. et al. Unlocking the potential of graphene for water oxidation using an orbital hybridization strategy. Energy Environ. Sci. 2018, 11, 407–416.

    Article  CAS  Google Scholar 

  29. You, C.; Ji, Y. Y.; Liu, Z. A.; Xiong, X. L.; Sun, X. P. Ultrathin CoFe-borate layer coated CoFe-layered double hydroxide nanosheets array: A non-noble-metal 3D catalyst electrode for efficient and durable water oxidation in potassium borate. ACS Sustainable Chem. Eng. 2018, 6, 1527–1531.

    Article  CAS  Google Scholar 

  30. Li, Y.; Li, F. M.; Meng, X. Y.; Li, S. N.; Zeng, J. H.; Chen, Y. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 2018, 8, 1913–1920.

    Article  CAS  Google Scholar 

  31. Cortie, M. B.; Maaroof, A. I.; Smith, G. B. Electrochemical capacitance of mesoporous gold. Gold Bull. 2005, 38, 14–22.

    Article  CAS  Google Scholar 

  32. Huang, K.; Peng, D. D.; Zhang, B. W.; Cao, X.; Hao, S. J.; Yang, G.; Dong, Y. B.; Wu, J. S.; Huang, Y. Z. Three dimension (3D) hierarchical electrode (Au/rGO/CoPt3) for electrooxidation of ethanol in fuel cells. Int. J. Hydrogen Energy 2018, 43, 12596–12602.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the MOE AcRF Tier 1 grant M4011528. The XRD and FEG-TEM characterisations were performed at Facility for Analysis, Characterisation, Testing and Simulation (FACTS) Lab; the FEG-SEM/FIB characterisations were carried out at Microelectronics Reliability and Characterisation (MRC) Lab.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junsheng Wu, Zheng Liu or Yizhong Huang.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest in this research.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Peng, D., Wu, C. et al. Flexible Au micro-array electrode with atomic-scale Au thin film for enhanced ethanol oxidation reaction. Nano Res. 14, 311–319 (2021). https://doi.org/10.1007/s12274-020-3090-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3090-4

Keywords

Navigation