Skip to main content

Advertisement

Log in

Atomic Layer Deposition for Electrochemical Energy: from Design to Industrialization

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The demand for high-performance devices that are used in electrochemical energy conversion and storage has increased rapidly. Tremendous efforts, such as adopting new materials, modifying existing materials, and producing new structures, have been made in the field in recent years. Atomic layer deposition (ALD), as an effective technique for the deposition of conformal and thickness-controllable thin films, has been widely utilized in producing electrode materials for electrochemical energy devices. Recent strategies have emerged and been developed for ALD to construct nanostructured architectures and three-dimensional (3D) micro/nanostructures. These strategies emphasize the preparation of active materials for devices such as batteries and supercapacitors or as catalysts for hydrogen evolution. Additionally, ALD is considered to have great potential in practical industrial production. In this review, we focus on the recent breakthroughs of ALD for the design of advanced materials and structures in electrochemical energy devices. The function and merits of ALD will be discussed in detail from traditional thin film depositions for the coating and engineering/modification layers to complex 3D micro/nanostructures that are designed for active materials. Furthermore, recent works regarding metal–organic framework films and transition metal dichalcogenide films, which were prepared with the assistance of ALD oxide, will be highlighted, and typical examples will be demonstrated and analysed. Because it is within a rapidly developing field, we believe that ALD will become an industrial deposition method that is important, commercially available, and widely used in electrochemical energy devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhu, Y., Murali, S., Stoller, M.D., et al.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011). https://doi.org/10.1126/science.1200770

    Article  CAS  Google Scholar 

  2. Dunn, B., Kamath, H., Tarascon, J.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741

    Article  CAS  Google Scholar 

  3. Hu, C.G., Xiao, Y., Zou, Y.Q., et al.: Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochem. Energy Rev. 1, 84–112 (2018). https://doi.org/10.1007/s41918-018-0003-2

    Article  CAS  Google Scholar 

  4. Li, Y.H., Li, Q.Y., Wang, H.Q., et al.: Recent progresses in oxygen reduction reaction electrocatalysts for electrochemical energy applications. Electrochem. Energy Rev. 2, 518–538 (2019). https://doi.org/10.1007/s41918-019-00052-4

    Article  CAS  Google Scholar 

  5. Zhang, X., Chen, A., Zhong, M., et al.: Metal–organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energy Rev. 2, 29–104 (2019). https://doi.org/10.1007/s41918-018-0024-x

    Article  CAS  Google Scholar 

  6. Fan, L.L., Li, M., Li, X.F., et al.: Interlayer material selection for lithium-sulfur batteries. Joule 3, 361–386 (2019). https://doi.org/10.1016/j.joule.2019.01.003

    Article  CAS  Google Scholar 

  7. Burschka, J., Pellet, N., Moon, S.J., et al.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340

    Article  CAS  Google Scholar 

  8. Liu, S.L., Zhao, Z., Jin, L., et al.: Nitrogen-doped carbon networks with consecutive conductive pathways from a facile competitive carbonization-etching strategy for high-performance energy storage. Small 18, 2104375 (2022). https://doi.org/10.1002/smll.202104375

    Article  CAS  Google Scholar 

  9. Liu, C., Li, F., Ma, L.P., et al.: Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010). https://doi.org/10.1002/adma.200903328

    Article  CAS  Google Scholar 

  10. Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438

    Article  CAS  Google Scholar 

  11. Armand, M., Tarascon, J.M.: Building better batteries batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a

    Article  CAS  Google Scholar 

  12. Cortright, R.D., Davda, R.R., Dumesic, J.A.: Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964–967 (2002). https://doi.org/10.1038/nature01009

    Article  CAS  Google Scholar 

  13. Dresselhaus, M.S., Thomas, I.L.: Alternative energy technologies. Nature 414, 332–337 (2001). https://doi.org/10.1038/35104599

    Article  CAS  Google Scholar 

  14. Hu, C.G., Xiao, Y., Zou, Y.Q., et al.: Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochem. Energy Rev. 1, 238–238 (2018). https://doi.org/10.1007/s41918-018-0005-0

    Article  Google Scholar 

  15. Lai, J.P., Chao, Y.G., Zhou, P., et al.: One-pot seedless aqueous design of metal nanostructures for energy electrocatalytic applications. Electrochem. Energy Rev. 1, 531–547 (2018). https://doi.org/10.1007/s41918-018-0018-8

    Article  CAS  Google Scholar 

  16. Wang, X.R., Tan, G.Q., Bai, Y., et al.: Multi-electron reaction materials for high-energy-density secondary batteries: current status and prospective. Electrochem. Energy Rev. 4, 35–66 (2021). https://doi.org/10.1007/s41918-020-00073-4

    Article  CAS  Google Scholar 

  17. Qian, H., Xu, S., Cao, J., et al.: Air pollution reduction and climate co-benefits in China’s industries. Nat. Sustain. 4, 188–188 (2021). https://doi.org/10.1038/s41893-021-00683-w

    Article  Google Scholar 

  18. Cortés-Arriagada, D., Villegas-Escobar, N., Ortega, D.E.: Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co-adsorption in O2 environments. Appl. Surf. Sci. 427, 227–236 (2018). https://doi.org/10.1016/j.apsusc.2017.08.216

    Article  CAS  Google Scholar 

  19. Nandanwar, S.U., Coldsnow, K., Utgikar, V., et al.: Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment: a review. Chem. Eng. J. 306, 369–381 (2016). https://doi.org/10.1016/j.cej.2016.07.073

    Article  CAS  Google Scholar 

  20. Lu, R.F., Meng, Z.S., Rao, D.W., et al.: A promising monolayer membrane for oxygen separation from harmful gases: nitrogen-substituted polyphenylene. Nanoscale 6, 9960–9964 (2014). https://doi.org/10.1039/c4nr02315c

    Article  CAS  Google Scholar 

  21. Britt, D., Tranchemontagne, D., Yaghi, O.M.: Metal-organic frameworks with high capacity and selectivity for harmful gases. Proc. Natl. Acad. Sci. U. S. A. 105, 11623–11627 (2008). https://doi.org/10.1073/pnas.0804900105

    Article  Google Scholar 

  22. Meinshausen, M., Meinshausen, N., Hare, W., et al.: Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1196 (2009)

    Article  CAS  Google Scholar 

  23. Lou, S., Zhao, Y., Wang, J., et al.: Ti-based oxide anode materials for advanced electrochemical energy storage: lithium/sodium ion batteries and hybrid pseudocapacitors. Small 15, e1904740 (2019). https://doi.org/10.1002/smll.201904740

    Article  CAS  Google Scholar 

  24. Gentili, V., Brutti, S., Hardwick, L.J., et al.: Lithium insertion into anatase nanotubes. Chem. Mater. 24, 4468–4476 (2012). https://doi.org/10.1021/cm302912f

    Article  CAS  Google Scholar 

  25. Li, Y., Pizer, W.A., Wu, L.: Climate change and residential electricity consumption in the Yangtze River Delta. China. Proc. Natl. Acad. Sci. U. S. A. 116, 472–477 (2019). https://doi.org/10.1073/pnas.1804667115

    Article  CAS  Google Scholar 

  26. Dalton, R.: Good times for green energy. Nature 443, 743–743 (2006)

    Google Scholar 

  27. Service, R.F.: Another biofuels drawback: the demand for irrigation. Science 326, 516–517 (2009). https://doi.org/10.1126/science.326_516

    Article  CAS  Google Scholar 

  28. Ding, Y.L., Cano, Z.P., Yu, A.P., et al.: Automotive Li-ion batteries: current status and future perspectives. Electrochem. Energy Rev. 2, 1–28 (2019). https://doi.org/10.1007/s41918-018-0022-z

    Article  CAS  Google Scholar 

  29. Lu, J., Chen, Z.W., Pan, F., et al.: High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 1, 35–53 (2018). https://doi.org/10.1007/s41918-018-0001-4

    Article  CAS  Google Scholar 

  30. Reddy, M.V., Subba Rao, G.V., Chowdari, B.V.: Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013). https://doi.org/10.1021/cr3001884

    Article  CAS  Google Scholar 

  31. Simon, P., Gogotsi, Y., Dunn, B.: Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625

    Article  CAS  Google Scholar 

  32. Augustyn, V., Come, J., Lowe, M.A., et al.: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013). https://doi.org/10.1038/nmat3601

    Article  CAS  Google Scholar 

  33. Wan, K.N., Liu, S.L., Zhang, C., et al.: Supramolecular assembly of 1D pristine carbon nanotubes and 2D graphene oxides into macroscopic all-carbon hybrid sponges for high-energy-density supercapacitors. ChemNanoMat 3, 447–453 (2017). https://doi.org/10.1002/cnma.201700037

    Article  CAS  Google Scholar 

  34. Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509

    Article  CAS  Google Scholar 

  35. Lee, M.M., Teuscher, J., Miyasaka, T., et al.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). https://doi.org/10.1126/science.1228604

    Article  CAS  Google Scholar 

  36. Jacobson, M.Z., Delucchi, M.A.: Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39, 1154–1169 (2011). https://doi.org/10.1016/j.enpol.2010.11.040

    Article  CAS  Google Scholar 

  37. Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., et al.: A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 16, 2154–2171 (2012). https://doi.org/10.1016/j.rser.2012.01.029

    Article  Google Scholar 

  38. Wang, S., Xie, Y., Niu, S., et al.: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26, 2818–2824 (2014). https://doi.org/10.1002/adma.201305303

    Article  CAS  Google Scholar 

  39. Guan, X.Y., Xu, B.G., Wu, M.J., et al.: Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy 80, 105549 (2021). https://doi.org/10.1016/j.nanoen.2020.105549

    Article  CAS  Google Scholar 

  40. Halámková, L., Halámek, J., Bocharova, V., et al.: Implanted biofuel cell operating in a living snail. J. Am. Chem. Soc. 134, 5040–5043 (2012). https://doi.org/10.1021/ja211714w

    Article  CAS  Google Scholar 

  41. Zebda, A., Gondran, C., le Goff, A., et al.: Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nat. Commun. 2, 370 (2011). https://doi.org/10.1038/ncomms1365

    Article  CAS  Google Scholar 

  42. De Pontieu, B., McIntosh, S.W., Carlsson, M., et al.: Chromospheric alfvenic waves strong enough to power the solar wind. Science 318, 1574–1577 (2007). https://doi.org/10.1126/science.1151747

    Article  CAS  Google Scholar 

  43. Service, R.F.: Fuel cells: shrinking fuel cells promise power in your pocket. Science 296, 1222–1224 (2002). https://doi.org/10.1126/science.296.5571.1222

    Article  CAS  Google Scholar 

  44. Su, Z., Liu, J.H., Li, M., et al.: Defect engineering in titanium-based oxides for electrochemical energy storage devices. Electrochem. Energy Rev. 3, 286–343 (2020). https://doi.org/10.1007/s41918-020-00064-5

    Article  CAS  Google Scholar 

  45. Yu, L.P., Chen, G.Z.: Supercapatteries as high-performance electrochemical energy storage devices. Electrochem. Energy Rev. 3, 271–285 (2020). https://doi.org/10.1007/s41918-020-00063-6

    Article  Google Scholar 

  46. Zhao, Z., Liu, S., Zhu, J., et al.: Hierarchical nanostructures of nitrogen-doped porous carbon polyhedrons confined in carbon nanosheets for high-performance supercapacitors. ACS Appl. Mater. Interfaces 10, 19871–19880 (2018). https://doi.org/10.1021/acsami.8b03431

    Article  CAS  Google Scholar 

  47. Lokhande, P.E., Chavan, U.S., Pandey, A.: Materials and fabrication methods for electrochemical supercapacitors: overview. Electrochem. Energy Rev. 3, 155–186 (2020). https://doi.org/10.1007/s41918-019-00057-z

    Article  CAS  Google Scholar 

  48. Zhou, J.Q., Zhang, S.L., Zhou, Y.N., et al.: Biomass-derived carbon materials for high-performance supercapacitors: current status and perspective. Electrochem. Energy Rev. 4, 219–248 (2021). https://doi.org/10.1007/s41918-020-00090-3

    Article  CAS  Google Scholar 

  49. Hao, Y., Li, X., Liu, W., et al.: Asynchronous reactions of “self-matrix” dual-crystals effectively accommodating volume expansion/shrinkage of electrode materials with enhanced sodium storage. Chem. Commun. 55, 9076–9079 (2019). https://doi.org/10.1039/c9cc03406d

    Article  CAS  Google Scholar 

  50. Wang, Y.M., Wang, X., Li, X.F., et al.: A high-performance, tailorable, wearable, and foldable solid-state supercapacitor enabled by arranging pseudocapacitive groups and MXene flakes on textile electrode surface. Adv. Funct. Mater. 31, 2008185 (2021). https://doi.org/10.1002/adfm.202008185

    Article  CAS  Google Scholar 

  51. Li, L., Zhang, X.X., Li, M., et al.: The recycling of spent lithium-ion batteries: a review of current processes and technologies. Electrochem. Energy Rev. 1, 461–482 (2018). https://doi.org/10.1007/s41918-018-0012-1

    Article  CAS  Google Scholar 

  52. Xiong, S.Z., Regula, M., Wang, D.H., et al.: Toward better lithium–sulfur batteries: functional non-aqueous liquid electrolytes. Electrochem. Energy Rev. 1, 388–402 (2018). https://doi.org/10.1007/s41918-018-0015-y

    Article  CAS  Google Scholar 

  53. Wismann, S.T., Engbæk, J.S., Vendelbo, S.B., et al.: Electrified methane reforming: a compact approach to greener industrial hydrogen production. Science 364, 756–759 (2019). https://doi.org/10.1126/science.aaw8775

    Article  CAS  Google Scholar 

  54. Liu, Z.Q., Zhang, X., Gong, Y., et al.: Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T’ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Res. 12, 1301–1305 (2019). https://doi.org/10.1007/s12274-018-2212-8

    Article  CAS  Google Scholar 

  55. Yang, J., Sudik, A., Wolverton, C., et al.: High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39, 656–675 (2010). https://doi.org/10.1039/b802882f

    Article  CAS  Google Scholar 

  56. Cheng, B., Mazzola, G., Pickard, C.J., et al.: Evidence for supercritical behaviour of high-pressure liquid hydrogen. Nature 585, 217–220 (2020). https://doi.org/10.1038/s41586-020-2677-y

    Article  CAS  Google Scholar 

  57. Desgreniers, S.: A milestone in the hunt for metallic hydrogen. Nature 577, 626–627 (2020). https://doi.org/10.1038/d41586-020-00149-7

    Article  CAS  Google Scholar 

  58. Lu, J.J., Yin, S.B., Shen, P.K.: Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energy Rev. 2, 105–127 (2019). https://doi.org/10.1007/s41918-018-0025-9

    Article  CAS  Google Scholar 

  59. Zhao, Z., Zhang, Z.W., Zhao, Y.T., et al.: Atomic layer deposition inducing integration of Co, N codoped carbon sphere on 3D foam with hierarchically porous structures for flexible hydrogen producing device. Adv. Funct. Mater. 29, 1906365 (2019). https://doi.org/10.1002/adfm.201906365

    Article  CAS  Google Scholar 

  60. Chen, Z.L., Ha, Y., Jia, H.X., et al.: Water splitting: oriented transformation of Co-LDH into 2D/3D ZIF-67 to achieve Co–N–C hybrids for efficient overall water splitting. Adv. Energy Mater. 9, 1970066 (2019). https://doi.org/10.1002/aenm.201970066

    Article  CAS  Google Scholar 

  61. Chen, Z., Wu, R., Liu, Y., et al.: Ultrafine co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 30, e1802011 (2018). https://doi.org/10.1002/adma.201802011

    Article  CAS  Google Scholar 

  62. Sun, J., Guo, N.K., Shao, Z.Y., et al.: Electrocatalysts: a facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant. Adv. Energy Mater. 8, 1870121 (2018). https://doi.org/10.1002/aenm.201870121

    Article  Google Scholar 

  63. Nature Podcast. Podcast: improving battery charging, and harnessing energy from the air. Nature. https://doi.org/10.1038/d41586-020-00482-x (2020). Accessed 17 Feb 2022

  64. Attia, P.M., Grover, A., Jin, N., et al.: Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 578, 397–402 (2020). https://doi.org/10.1038/s41586-020-1994-5

    Article  CAS  Google Scholar 

  65. Zhao, E.W., Liu, T., Jónsson, E., et al.: In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Nature 579, 224–228 (2020). https://doi.org/10.1038/s41586-020-2081-7

    Article  CAS  Google Scholar 

  66. Guo, N.K., Xue, H., Bao, A., et al.: Frontispiece: achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process. Angew. Chem. Int. Ed. 59, 13778–13784 (2020). https://doi.org/10.1002/anie.202083361

    Article  CAS  Google Scholar 

  67. Liu, H., Zhu, Z., Yan, Q., et al.: A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63–67 (2020). https://doi.org/10.1038/s41586-020-2637-6

    Article  CAS  Google Scholar 

  68. Nong, H.N., Falling, L.J., Bergmann, A., et al.: Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020). https://doi.org/10.1038/s41586-020-2908-2

    Article  CAS  Google Scholar 

  69. Zhang, Y., Chen, B., Guan, D., et al.: Thermal-expansion offset for high-performance fuel cell cathodes. Nature 591, 246–251 (2021). https://doi.org/10.1038/s41586-021-03264-1

    Article  CAS  Google Scholar 

  70. Sari, M.K., Li, H., F, X.: Batteries: controllable cathode–electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv. Energy Mater. 9, 19701 (2019). https://doi.org/10.1002/aenm.201970151

    Article  Google Scholar 

  71. Aricò, A.S., Bruce, P., Scrosati, B., et al.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005). https://doi.org/10.1038/nmat1368

    Article  CAS  Google Scholar 

  72. Yan, B., Li, X.F., Xiao, W., et al.: Design, synthesis, and application of metal sulfides for Li–S batteries: progress and prospects. J. Mater. Chem. A 8, 17848–17882 (2020). https://doi.org/10.1039/d0ta06220k

    Article  CAS  Google Scholar 

  73. Liu, W., Yuan, J.J., Hao, Y.C., et al.: Heterogeneous structured MoSe2–MoO3 quantum dots with enhanced sodium/potassium storage. J. Mater. Chem. A 8, 23395–23403 (2020). https://doi.org/10.1039/d0ta08674f

    Article  CAS  Google Scholar 

  74. Li, M., Lu, J., Chen, Z., et al.: 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018). https://doi.org/10.1002/adma.201800561

    Article  CAS  Google Scholar 

  75. Cano, Z.P., Banham, D., Ye, S., et al.: Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1

    Article  Google Scholar 

  76. Schmuch, R., Wagner, R., Hörpel, G., et al.: Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2

    Article  CAS  Google Scholar 

  77. Ding, J., Hu, W., Paek, E., et al.: Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118, 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116

    Article  CAS  Google Scholar 

  78. Zheng, S.S., Xue, H.G., Pang, H.: Supercapacitors based on metal coordination materials. Coord. Chem. Rev. 373, 2–21 (2018). https://doi.org/10.1016/j.ccr.2017.07.002

    Article  CAS  Google Scholar 

  79. Lan, Y., Zhao, H., Zong, Y., et al.: Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale 10, 11775–11781 (2018). https://doi.org/10.1039/c8nr01229f

    Article  CAS  Google Scholar 

  80. Liu, W., Li, X.F., Xiong, D.B., et al.: Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 44, 111–120 (2018). https://doi.org/10.1016/j.nanoen.2017.11.010

    Article  CAS  Google Scholar 

  81. Wu, J.H., Shen, L., Zhang, Z.H., et al.: All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energy Rev. 4, 101–135 (2021). https://doi.org/10.1007/s41918-020-00081-4

    Article  CAS  Google Scholar 

  82. Wang, Y., Wang, Y., Hosono, E., et al.: The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem. Int. Ed. 47, 7461–7465 (2008). https://doi.org/10.1002/anie.200802539

    Article  CAS  Google Scholar 

  83. Xue, Y.H., Liu, J., Chen, H., et al.: Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem. Int. Ed. 51, 12124–12127 (2012). https://doi.org/10.1002/anie.201207277

    Article  CAS  Google Scholar 

  84. Manthiram, A., Yu, X., Wang, S.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103

    Article  CAS  Google Scholar 

  85. Xiao, W., Wang, J.Y., Fan, L.L., et al.: Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Mater. 19, 379–400 (2019). https://doi.org/10.1016/j.ensm.2018.10.012

    Article  Google Scholar 

  86. Zhao, Z., Kong, Y., Zhang, Z.W., et al.: Atomic layer–deposited nanostructures and their applications in energy storage and sensing. J. Mater. Res. 35, 701–719 (2020). https://doi.org/10.1557/jmr.2019.329

    Article  CAS  Google Scholar 

  87. Zhang, Z.W., Zhao, Y.T., Zhao, Z., et al.: Atomic layer deposition-derived nanomaterials: oxides, transition metal dichalcogenides, and metal-organic frameworks. Chem. Mater. 32, 9056–9077 (2020). https://doi.org/10.1021/acs.chemmater.9b04414

    Article  CAS  Google Scholar 

  88. Liu, Y., Sun, Q., Zhao, Y., et al.: Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Appl. Mater. Interfaces 10, 31240–31248 (2018). https://doi.org/10.1021/acsami.8b06366

    Article  CAS  Google Scholar 

  89. Ma, D.T., Li, Y.L., Yang, J.B., et al.: New strategy for polysulfide protection based on atomic layer deposition of TiO2 onto ferroelectric-encapsulated cathode: toward ultrastable free-standing room temperature sodium-sulfur batteries. Adv. Funct. Mater. 28, 1705537 (2018). https://doi.org/10.1002/adfm.201705537

    Article  CAS  Google Scholar 

  90. Cremers, V., Puurunen, R.L., Dendooven, J.: Conformality in atomic layer deposition: current status overview of analysis and modelling. Appl. Phys. Rev. 6, 021302 (2019). https://doi.org/10.1063/1.5060967

    Article  CAS  Google Scholar 

  91. Liu, C., Wang, Y., Tian, Z.A., et al.: Low-dimensional vanadium dioxide nanomaterials: fabrication, properties and applications. J. Phys. Mater. 3, 032007 (2020). https://doi.org/10.1088/2515-7639/aba1d6

    Article  CAS  Google Scholar 

  92. Faraz, T., Knoops, H.C.M., Verheijen, M.A., et al.: Tuning material properties of oxides and nitrides by substrate biasing during plasma-enhanced atomic layer deposition on planar and 3D substrate topographies. ACS Appl. Mater. Interfaces 10, 13158–13180 (2018). https://doi.org/10.1021/acsami.8b00183

    Article  CAS  Google Scholar 

  93. Shen, X., Li, C., Shi, C., et al.: Core-shell structured ceramic nonwoven separators by atomic layer deposition for safe lithium-ion batteries. Appl. Surf. Sci. 441, 165–173 (2018). https://doi.org/10.1016/j.apsusc.2018.01.222

    Article  CAS  Google Scholar 

  94. Liang, J.N., Sun, Q., Zhao, Y., et al.: Stabilization of all-solid-state Li–S batteries with a polymer–ceramic sandwich electrolyte by atomic layer deposition. J. Mater. Chem. A 6, 23712–23719 (2018). https://doi.org/10.1039/c8ta09069f

    Article  CAS  Google Scholar 

  95. Ma, D.T., Li, Y.L., Yang, J.B., et al.: Atomic layer deposition-enabled ultrastable freestanding carbon-selenium cathodes with high mass loading for sodium-selenium battery. Nano Energy 43, 317–325 (2018). https://doi.org/10.1016/j.nanoen.2017.11.042

    Article  CAS  Google Scholar 

  96. Li, M., Tu, X., Wang, Y., et al.: Highly enhanced visible-light-driven photoelectrochemical performance of ZnO-modified In2S3 nanosheet arrays by atomic layer deposition. Nano Micro Lett. 10, 45 (2018). https://doi.org/10.1007/s40820-018-0199-z

    Article  CAS  Google Scholar 

  97. Hou, Y.N., Li, X.F., Liu, W., et al.: ALD derived Fe3+- doping toward high performance P2-Na0. 75Ni0 2Co0.2Mn0.6O2 cathode material for sodium ion batteries. Mater. Today Energy 14, 100353 (2019). https://doi.org/10.1016/j.mtener.2019.100353

    Article  Google Scholar 

  98. O’Neill, B.J., Jackson, D.H.K., Lee, J., et al.: Catalyst design with atomic layer deposition. ACS Catal. 5, 1804–1825 (2015). https://doi.org/10.1021/cs501862h

    Article  CAS  Google Scholar 

  99. Johnson, R.W., Hultqvist, A., Bent, S.F.: A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17, 236–246 (2014). https://doi.org/10.1016/j.mattod.2014.04.026

    Article  CAS  Google Scholar 

  100. Meng, X.B., Yang, X.Q., Sun, X.L.: Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv. Mater. 24, 3589–3615 (2012). https://doi.org/10.1002/adma.201200397

    Article  CAS  Google Scholar 

  101. Mackus, A.J.M., Bol, A.A., Kessels, W.M.M.: The use of atomic layer deposition in advanced nanopatterning. Nanoscale 6, 10941–10960 (2014). https://doi.org/10.1039/c4nr01954g

    Article  CAS  Google Scholar 

  102. Knez, M., Nielsch, K., Niinistö, L.: Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 19, 3425–3438 (2007). https://doi.org/10.1002/adma.200700079

    Article  CAS  Google Scholar 

  103. George, S.M.: Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010). https://doi.org/10.1021/cr900056b

    Article  CAS  Google Scholar 

  104. Groner, M.D., Fabreguette, F.H., Elam, J.W., et al.: Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639–645 (2004). https://doi.org/10.1021/cm0304546

    Article  CAS  Google Scholar 

  105. Mondloch, J.E., Bury, W., Fairen-Jimenez, D., et al.: Vapor-phase metalation by atomic layer deposition in a metal-organic framework. J. Am. Chem. Soc. 135, 10294–10297 (2013). https://doi.org/10.1021/ja4050828

    Article  CAS  Google Scholar 

  106. Profijt, H.B., Potts, S.E., van de Sanden, M.C.M., et al.: Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. J. Vac. Sci. Technol. A Vac. Surf. Films 29, 050801 (2011) https://doi.org/10.1116/1.3609974

  107. Lim, B.S., Rahtu, A., Gordon, R.G.: Atomic layer deposition of transition metals. Nat. Mater. 2, 749–754 (2003). https://doi.org/10.1038/nmat1000

    Article  CAS  Google Scholar 

  108. Lu, J., Fu, B., Kung, M.C., et al.: Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335, 1205–1208 (2012). https://doi.org/10.1126/science.1212906

    Article  CAS  Google Scholar 

  109. Ma, F., Yang, B., Zhao, Z., et al.: Sonication-triggered rolling of Janus porous nanomembranes for electrochemical sensing of dopamine and ascorbic acid. ACS Appl. Nano Mater. 3, 10032–10039 (2020). https://doi.org/10.1021/acsanm.0c02019

    Article  CAS  Google Scholar 

  110. Ma, F., Yang, B., Zhang, Z.W., et al.: Self-rolled TiO2 microscroll/graphene composite for electrochemical dopamine sensing. Prog. Nat. Sci. Mater. Int. 30, 337–342 (2020). https://doi.org/10.1016/j.pnsc.2020.02.008

    Article  CAS  Google Scholar 

  111. Mackus, A.J.M., Schneider, J.R., MacIsaac, C., et al.: Synthesis of doped, ternary, and quaternary materials by atomic layer deposition: a review. Chem. Mater. 31, 1142–1183 (2019). https://doi.org/10.1021/acs.chemmater.8b02878

    Article  CAS  Google Scholar 

  112. Detavernier, C., Dendooven, J., Pulinthanathu Sree, S., et al.: Tailoring nanoporous materials by atomic layer deposition. Chem. Soc. Rev. 40, 5242 (2011). https://doi.org/10.1039/c1cs15091j

    Article  CAS  Google Scholar 

  113. Wang, T., Luo, Z., Li, C., et al.: Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chem. Soc. Rev. 43, 7469–7484 (2014). https://doi.org/10.1039/c3cs60370a

    Article  CAS  Google Scholar 

  114. Asundi, A.S., Raiford, J.A., Bent, S.F.: Opportunities for atomic layer deposition in emerging energy technologies. ACS Energy Lett. 4, 908–925 (2019). https://doi.org/10.1021/acsenergylett.9b00249

    Article  CAS  Google Scholar 

  115. Schwartzberg, A.M., Olynick, D.: Complex materials by atomic layer deposition. Adv. Mater. 27, 5778–5784 (2015). https://doi.org/10.1002/adma.201500699

    Article  CAS  Google Scholar 

  116. Lu, J., Low, K.B., Lei, Y., et al.: Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition. Nat. Commun. 5, 3264 (2014). https://doi.org/10.1038/ncomms4264

    Article  CAS  Google Scholar 

  117. Zhu, M., Yu, L.B., He, S.S., et al.: Highly efficient and stable cellulose-based ion gel polymer electrolyte for solid-state supercapacitors. ACS Appl. Energy Mater. 2, 5992–6001 (2019). https://doi.org/10.1021/acsaem.9b01109

    Article  CAS  Google Scholar 

  118. Lu, J.L., Elam, J.W., Stair, P.C.: Atomic layer deposition—sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surf. Sci. Rep. 71, 410–472 (2016). https://doi.org/10.1016/j.surfrep.2016.03.003

    Article  CAS  Google Scholar 

  119. Peng, Q., Lewis, J.S., Hoertz, P.G., et al.: Atomic layer deposition for electrochemical energy generation and storage systems. J. Vac. Sci. Technol. A 30, 010803 (2012). https://doi.org/10.1116/1.3672027

    Article  CAS  Google Scholar 

  120. Meng, X.B.: Atomic-scale surface modifications and novel electrode designs for high-performance sodium-ion batteries via atomic layer deposition. J. Mater. Chem. A 5, 10127–10149 (2017). https://doi.org/10.1039/c7ta02742g

    Article  CAS  Google Scholar 

  121. Lu, J.L., Elam, J.W., Stair, P.C.: Synthesis and stabilization of supported metal catalysts by atomic layer deposition. Acc. Chem. Res. 46, 1806–1815 (2013). https://doi.org/10.1021/ar300229c

    Article  CAS  Google Scholar 

  122. Pickrahn, K.L., Park, S.W., Gorlin, Y., et al.: Active MnOx electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions. Adv. Energy Mater. 2, 1269–1277 (2012). https://doi.org/10.1002/aenm.201200230

    Article  CAS  Google Scholar 

  123. Wang, H., Lu, Z., Xu, S., et al.: Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. U. S. A. 110, 19701–19706 (2013). https://doi.org/10.1073/pnas.1316792110

    Article  CAS  Google Scholar 

  124. Song, M., Tan, H., Li, X.L., et al.: Atomic-layer-deposited amorphous MoS2 for durable and flexible Li–O2 batteries. Small Methods 4, 1900274 (2020). https://doi.org/10.1002/smtd.201900274

    Article  CAS  Google Scholar 

  125. Kwon, D.H., Jin, Z.Y., Shin, S., et al.: A comprehensive study on atomic layer deposition of molybdenum sulfide for electrochemical hydrogen evolution. Nanoscale 8, 7180–7188 (2016). https://doi.org/10.1039/c5nr09065b

    Article  CAS  Google Scholar 

  126. Zhao, Z., Kong, Y., Huang, G.S., et al.: Area-selective and precise assembly of metal organic framework particles by atomic layer deposition induction and its application for ultra-sensitive dopamine sensor. Nano Today 42, 101347 (2022). https://doi.org/10.1016/j.nantod.2021.101347

    Article  CAS  Google Scholar 

  127. Zhao, Z., Kong, Y., Liu, C., et al.: Atomic layer deposition-assisted fabrication of 3D Co-doped carbon framework for sensitive enzyme-free lactic acid sensor. Chem. Eng. J. 417, 129285 (2021). https://doi.org/10.1016/j.cej.2021.129285

    Article  CAS  Google Scholar 

  128. Zhao, Z., Kong, Y., Lin, X.Y., et al.: Oxide nanomembrane induced assembly of a functional smart fiber composite with nanoporosity for an ultra-sensitive flexible glucose sensor. J. Mater. Chem. A 8, 26119–26129 (2020). https://doi.org/10.1039/d0ta09211h

    Article  CAS  Google Scholar 

  129. Zhao, Z., Kong, Y., Huang, G.S., et al.: Nickel-based metal-organic frameworks-modified flexible fiber: preparation and its dopamine sensing application. Chin. Sci. Bull. 66, 4187–4196 (2021). https://doi.org/10.1360/tb-2021-0093

    Article  Google Scholar 

  130. Zhao, Z., Kong, Y., Liu, C., et al.: Atomic layer deposition-induced integration of N-doped carbon particles on carbon foam for flexible supercapacitor. J. Materiomics 6, 209–215 (2020). https://doi.org/10.1016/j.jmat.2020.01.011

    Article  Google Scholar 

  131. Kong, Y., Zhao, Z., Wang, Y.Q., et al.: Integration of a metal-organic framework film with a tubular whispering-gallery-mode microcavity for effective CO2 sensing. ACS Appl. Mater. Interfaces 13, 58104–58113 (2021). https://doi.org/10.1021/acsami.1c16322

    Article  CAS  Google Scholar 

  132. Chandrasekaran, S., Kaeffer, N., Cagnon, L., et al.: A robust ALD-protected silicon-based hybrid photoelectrode for hydrogen evolution under aqueous conditions. Chem. Sci. 10, 4469–4475 (2019). https://doi.org/10.1039/c8sc05006f

    Article  CAS  Google Scholar 

  133. Kim, I.S., Pellin, M.J., Martinson, A.B.F.: Acid-compatible halide perovskite photocathodes utilizing atomic layer deposited TiO2 for solar-driven hydrogen evolution. ACS Energy Lett. 4, 293–298 (2019). https://doi.org/10.1021/acsenergylett.8b01661

    Article  CAS  Google Scholar 

  134. Cheng, N., Stambula, S., Wang, D., et al.: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638

    Article  CAS  Google Scholar 

  135. Zhang, Z.W., Deng, L.J., Zhao, Z., et al.: Nickel nanograins anchored on a carbon framework for an efficient hydrogen evolution electrocatalyst and a flexible electrode. J. Mater. Chem. A 8, 3499–3508 (2020). https://doi.org/10.1039/c9ta13632k

    Article  CAS  Google Scholar 

  136. Zhang, X.B., Shao, B.Y., Sun, Z.M., et al.: Platinum nanoparticle-deposited Ti3C2Tx MXene for hydrogen evolution reaction. Ind. Eng. Chem. Res. 59, 1822–1828 (2020). https://doi.org/10.1021/acs.iecr.9b05046

    Article  CAS  Google Scholar 

  137. Cao, K., Shi, L., Gong, M., et al.: Nanofence stabilized platinum nanoparticles catalyst via facet-selective atomic layer deposition. Small 13, 1700648 (2017). https://doi.org/10.1002/smll.201700648

    Article  CAS  Google Scholar 

  138. Cai, J., Zhang, J., Cao, K., et al.: Selective passivation of Pt nanoparticles with enhanced sintering resistance and activity toward CO oxidation via atomic layer deposition. ACS Appl. Nano Mater. 1, 522–530 (2018). https://doi.org/10.1021/acsanm.7b00026

    Article  CAS  Google Scholar 

  139. Cao, K., Zhu, Q., Shan, B., et al.: Controlled synthesis of Pd/Pt core shell nanoparticles using area-selective atomic layer deposition. Sci. Rep. 5, 8470 (2015). https://doi.org/10.1038/srep08470

    Article  CAS  Google Scholar 

  140. Chen, R., Kim, H., McIntyre, P.C., et al.: Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification. Appl. Phys. Lett. 86, 191910 (2005). https://doi.org/10.1063/1.1922076

    Article  CAS  Google Scholar 

  141. Liu, X., Zhu, Q., Lang, Y., et al.: Oxide-nanotrap-anchored platinum nanoparticles with high activity and sintering resistance by area-selective atomic layer deposition. Angew. Chem. Int. Edit. 56, 1648–1652 (2017). https://doi.org/10.1002/anie.201611559

    Article  CAS  Google Scholar 

  142. Balasubramanyam, S., Shirazi, M., Bloodgood, M.A., et al.: Edge-site nanoengineering of WS2 by low-temperature plasma-enhanced atomic layer deposition for electrocatalytic hydrogen evolution. Chem. Mater. 31, 5104–5115 (2019). https://doi.org/10.1021/acs.chemmater.9b01008

    Article  CAS  Google Scholar 

  143. Wu, M.X., Yang, Y.W.: Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1606134 (2017). https://doi.org/10.1002/adma.201606134

    Article  CAS  Google Scholar 

  144. Stock, N., Biswas, S.: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012). https://doi.org/10.1021/cr200304e

    Article  CAS  Google Scholar 

  145. Shekhah, O., Liu, J., Fischer, R.A., et al.: MOF thin films: existing and future applications. Chem. Soc. Rev. 40, 1081 (2011). https://doi.org/10.1039/c0cs00147c

    Article  CAS  Google Scholar 

  146. Stavila, V., Talin, A.A., Allendorf, M.D.: MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014). https://doi.org/10.1039/c4cs00096j

    Article  CAS  Google Scholar 

  147. Chaikittisilp, W., Ariga, K., Yamauchi, Y.: A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 1, 14–19 (2013). https://doi.org/10.1039/c2ta00278g

    Article  CAS  Google Scholar 

  148. Sheberla, D., Bachman, J.C., Elias, J.S., et al.: Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017). https://doi.org/10.1038/nmat4766

    Article  CAS  Google Scholar 

  149. Zou, F., Hu, X.L., Li, Z., et al.: MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 26, 6622–6628 (2014). https://doi.org/10.1002/adma.201402322

    Article  CAS  Google Scholar 

  150. Liu, Y.L., Eubank, J., Cairns, A., et al.: Assembly of metal–organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. Angew. Chem. Int. Ed. 46, 3278–3283 (2007). https://doi.org/10.1002/anie.200604306

    Article  CAS  Google Scholar 

  151. Yang, S.J., Kim, T., Im, J.H., et al.: MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 24, 464–470 (2012). https://doi.org/10.1021/cm202554j

    Article  CAS  Google Scholar 

  152. Sun, D.F., Ma, S.Q., Ke, Y.X., et al.: An interweaving MOF with high hydrogen uptake. J. Am. Chem. Soc. 128, 3896–3897 (2006). https://doi.org/10.1021/ja058777l

    Article  CAS  Google Scholar 

  153. Jiang, H.L., Tatsu, Y., Lu, Z.H., et al.: Non-, micro-, and mesoporous metal–organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation. J. Am. Chem. Soc. 132, 5586–5587 (2010). https://doi.org/10.1021/ja101541s

    Article  CAS  Google Scholar 

  154. Ge, X.L., Li, Z.Q., Yin, L.W.: Metal-organic frameworks derived porous core/shell CoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 32, 117–124 (2017). https://doi.org/10.1016/j.nanoen.2016.11.055

    Article  CAS  Google Scholar 

  155. Liu, H.P., Wang, H.M., Chu, T.S., et al.: An electrodeposited lanthanide MOF thin film as a luminescent sensor for carbonate detection in aqueous solution. J. Mater. Chem. C 2, 8683–8690 (2014). https://doi.org/10.1039/c4tc01551g

    Article  CAS  Google Scholar 

  156. Zhang, W., Yao, X., Zhou, S., et al.: ZIF-8/ZIF-67-derived Co-Nx-embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst. Small Weinheim Der Bergstrasse Ger. 14, e1800423 (2018). https://doi.org/10.1002/smll.201800423

    Article  CAS  Google Scholar 

  157. Jia, G., Zhang, W., Fan, G.Z., et al.: Three-dimensional hierarchical architectures derived from surface-mounted metal-organic framework membranes for enhanced electrocatalysis. Angew. Chem. Int. Ed. 56, 13781–13785 (2017). https://doi.org/10.1002/anie.201708385

    Article  CAS  Google Scholar 

  158. So, M.C., Jin, S., Son, H.J., et al.: Layer-by-layer fabrication of oriented porous thin films based on porphyrin-containing metal-organic frameworks. J. Am. Chem. Soc. 135, 15698–15701 (2013). https://doi.org/10.1021/ja4078705

    Article  CAS  Google Scholar 

  159. Zhang, A.J., Li, X.Y., Zhang, S.Y., et al.: Spray-drying-assisted reassembly of uniform and large micro-sized MIL-101 microparticles with controllable morphologies for benzene adsorption. J. Colloid Interface Sci. 506, 1–9 (2017). https://doi.org/10.1016/j.jcis.2017.07.022

    Article  CAS  Google Scholar 

  160. Yoo, Y., Jeong, H.K.: Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. Chem. Commun. (2008). https://doi.org/10.1039/b800061a

    Article  Google Scholar 

  161. Ruan, J.F., Mo, F.J., Chen, Z.L., et al.: Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. 10, 1904045 (2020). https://doi.org/10.1002/aenm.201904045

    Article  CAS  Google Scholar 

  162. Zhao, J.J., Lee, D.T., Yaga, R.W., et al.: Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs. Angew. Chem. Int. Ed. 55, 13224–13228 (2016). https://doi.org/10.1002/anie.201606656

    Article  CAS  Google Scholar 

  163. Zhao, J.J., Losego, M.D., Lemaire, P.C., et al. (2014) Metal-organic frameworks: highly adsorptive, MOF-functionalized nonwoven fiber mats for hazardous gas capture enabled by atomic layer deposition. Adv. Mater. Interfaces (Adv. Mater. Interfaces 4/2014) 1, inside front cover. https://doi.org/10.1002/admi.201470023

  164. Stassen, I., Styles, M., Grenci, G., et al.: Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat. Mater. 15, 304–310 (2016). https://doi.org/10.1038/nmat4509

    Article  CAS  Google Scholar 

  165. Krishtab, M., Stassen, I., Stassin, T., et al.: Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics. Nat. Commun. 10, 3729 (2019). https://doi.org/10.1038/s41467-019-11703-x

    Article  CAS  Google Scholar 

  166. Stassin, T., Stassen, I., Marreiros, J., et al.: Solvent-free powder synthesis and MOF-CVD thin films of the large-pore metal-organic framework MAF-6. Chem. Mater. 32, 1784–1793 (2020). https://doi.org/10.1021/acs.chemmater.9b03807

    Article  CAS  Google Scholar 

  167. Ren, W.N., Zhang, H.F., Cheng, C.W.: Ultrafine Pt nanoparticles decorated MoS2 nanosheets with significantly improved hydrogen evolution activity. Electrochim. Acta 241, 316–322 (2017). https://doi.org/10.1016/j.electacta.2017.04.145

    Article  CAS  Google Scholar 

  168. Ramesh, R., Sawant, S.Y., Nandi, D.K., et al.: Hydrogen evolution reaction by atomic layer-deposited MoNx on porous carbon substrates: the effects of porosity and annealing on catalyst activity and stability. Chemsuschem 13, 4159–4168 (2020). https://doi.org/10.1002/cssc.202000350

    Article  CAS  Google Scholar 

  169. Zhang, L., Zhao, Z.-J., Banis, M.N., et al.: Selective atomic layer deposition of RuOx catalysts on shape- controlled Pd nanocrystals with significantly enhanced hydrogen evolution activity. J. Mater. Chem. A 6, 24397–24406 (2018). https://doi.org/10.1039/c8ta08931k

    Article  CAS  Google Scholar 

  170. Nayak, P., Jiang, Q., Kurra, N., et al.: Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction. J. Mater. Chem. A 5, 20422–20427 (2017). https://doi.org/10.1039/c7ta06236b

    Article  CAS  Google Scholar 

  171. Xiong, W., Guo, Z., Li, H., et al.: Rational bottom-up engineering of electrocatalysts by atomic layer deposition: a case study of FexCo1–xSy-based catalysts for electrochemical hydrogen evolution. ACS Energy Lett. 2, 2778–2785 (2017). https://doi.org/10.1021/acsenergylett.7b01056

    Article  CAS  Google Scholar 

  172. Chen, H., Chen, J.T., Shao, L., et al.: Minimum and well-dispersed platinum nanoparticles on 3D porous nickel for highly efficient electrocatalytic hydrogen evolution reaction enabled by atomic layer deposition. Appl. Surf. Sci. 494, 1091–1099 (2019). https://doi.org/10.1016/j.apsusc.2019.07.251

    Article  CAS  Google Scholar 

  173. Zhang, L., Si, R., Liu, H., et al.: Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019). https://doi.org/10.1038/s41467-019-12887-y

    Article  CAS  Google Scholar 

  174. Shin, S., Jin, Z., Kwon, D.H., et al.: High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition. Langmuir 31, 1196–1202 (2015). https://doi.org/10.1021/la504162u

    Article  CAS  Google Scholar 

  175. Zhang, H.J., Hagen, D.J., Li, X.P., et al.: Atomic layer deposition of cobalt phosphide for efficient water splitting. Angew. Chem. Int. Ed. 59, 17172–17176 (2020). https://doi.org/10.1002/anie.202002280

    Article  CAS  Google Scholar 

  176. Kim, D., Song, J.G., Yang, H., et al.: Textile-based high-performance hydrogen evolution of low-temperature atomic layer deposition of cobalt sulfide. Nanoscale 11, 7002–7002 (2019). https://doi.org/10.1039/c9nr90074h

    Article  CAS  Google Scholar 

  177. Katuri, K.P., Bettahalli, N.M.S., Wang, X.B., et al.: A microfiltration polymer-based hollow-fiber cathode as a promising advanced material for simultaneous recovery of energy and water. Adv. Mater. 28, 9504–9511 (2016). https://doi.org/10.1002/adma.201603074

    Article  CAS  Google Scholar 

  178. Hsu, I.J., Kimmel, Y.C., Jiang, X., et al.: Atomic layer deposition synthesis of platinum-tungsten carbide core-shell catalysts for the hydrogen evolution reaction. Chem. Commun. 48, 1063–1065 (2012). https://doi.org/10.1039/c1cc15812k

    Article  CAS  Google Scholar 

  179. Ho, T.A., Bae, C., Lee, S., et al.: Edge-on MoS2 thin films by atomic layer deposition for understanding the interplay between the active area and hydrogen evolution reaction. Chem. Mater. 29, 7604–7614 (2017). https://doi.org/10.1021/acs.chemmater.7b03212

    Article  CAS  Google Scholar 

  180. Xiong, W., Guo, Q., Guo, Z., et al.: Atomic layer deposition of nickel carbide for supercapacitors and electrocatalytic hydrogen evolution. J. Mater. Chem. A 6, 4297–4304 (2018). https://doi.org/10.1039/c7ta10202j

    Article  CAS  Google Scholar 

  181. Edy, R., Zhao, Y.T., Huang, G.S., et al.: TiO2 nanosheets synthesized by atomic layer deposition for photocatalysis. Prog. Nat. Sci. Mater. Int. 26, 493–497 (2016). https://doi.org/10.1016/j.pnsc.2016.08.010

    Article  CAS  Google Scholar 

  182. Edy, R., Huang, G.S., Zhao, Y.T., et al.: Influence of reactive surface groups on the deposition of oxides thin film by atomic layer deposition. Surf. Coat. Technol. 329, 149–154 (2017). https://doi.org/10.1016/j.surfcoat.2017.09.047

    Article  CAS  Google Scholar 

  183. Mei, Y.F., Huang, G.S., Solovev, A.A., et al.: Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 20, 4085–4090 (2008). https://doi.org/10.1002/adma.200801589

    Article  CAS  Google Scholar 

  184. Jung, Y.S., Cavanagh, A.S., Riley, L.A., et al.: Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv. Mater. 22, 2172–2176 (2010). https://doi.org/10.1002/adma.200903951

    Article  CAS  Google Scholar 

  185. Marichy, C., Bechelany, M., Pinna, N.: Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv. Mater. 24, 1017–1032 (2012). https://doi.org/10.1002/adma.201104129

    Article  CAS  Google Scholar 

  186. Han, X., Gong, Y., Fu, K., et al.: Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017). https://doi.org/10.1038/nmat4821

    Article  CAS  Google Scholar 

  187. Lee, J.W., Soomro, A.M., Waqas, M., et al.: A highly efficient surface modified separator fabricated with atmospheric atomic layer deposition for high temperature lithium ion batteries. Int. J. Energy Res. 44, 7035–7046 (2020). https://doi.org/10.1002/er.5371

    Article  CAS  Google Scholar 

  188. Chen, H., Lin, Q., Xu, Q., et al.: Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries. J. Membr. Sci. 458, 217–224 (2014). https://doi.org/10.1016/j.memsci.2014.02.004

    Article  CAS  Google Scholar 

  189. Biyikli, N., Haider, A.: Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors. Semicond. Sci. Technol. 32, 093002 (2017). https://doi.org/10.1088/1361-6641/aa7ade

    Article  CAS  Google Scholar 

  190. Lei, Y., Lu, J., Luo, X., et al.: Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium-O2 battery. Nano Lett. 13, 4182–4189 (2013). https://doi.org/10.1021/nl401833p

    Article  CAS  Google Scholar 

  191. Solanki, R., Huo, J., Freeouf, J.L., et al.: Atomic layer deposition of ZnSe/CdSe superlattice nanowires. Appl. Phys. Lett. 81, 3864–3866 (2002). https://doi.org/10.1063/1.1521570

    Article  CAS  Google Scholar 

  192. Naeem, F., Naeem, S., Zhao, Z., et al.: Atomic layer deposition synthesized ZnO nanomembranes: a facile route towards stable supercapacitor electrode for high capacitance. J. Power Sources 451, 227740 (2020). https://doi.org/10.1016/j.jpowsour.2020.227740

    Article  CAS  Google Scholar 

  193. Fan, L.L., Li, X.F.: Recent advances in effective protection of sodium metal anode. Nano Energy 53, 630–642 (2018). https://doi.org/10.1016/j.nanoen.2018.09.017

    Article  CAS  Google Scholar 

  194. Wang, A., Kadam, S., Li, H., et al.: Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Npj Comput. Mater. 4, 15 (2018). https://doi.org/10.1038/s41524-018-0064-0

    Article  CAS  Google Scholar 

  195. Peled, E.: The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems: the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979). https://doi.org/10.1149/1.2128859

    Article  CAS  Google Scholar 

  196. Bommier, C., Leonard, D., Jian, Z.L., et al.: New paradigms on the nature of solid electrolyte interphase formation and capacity fading of hard carbon anodes in Na-ion batteries. Adv. Mater. Interfaces 3, 1600449 (2016). https://doi.org/10.1002/admi.201600449

    Article  CAS  Google Scholar 

  197. Peled, E., Menkin, S.: Review: SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017). https://doi.org/10.1149/2.1441707jes

    Article  CAS  Google Scholar 

  198. Liu, W., Liu, P.C., Mitlin, D.: Solid electrolyte interphases: review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 10, 2070177 (2020). https://doi.org/10.1002/aenm.202070177

    Article  CAS  Google Scholar 

  199. Luo, W., Lin, C.F., Zhao, O., et al.: Ultrathin surface coating enables the stable sodium metal anode. Adv. Energy Mater. 7, 1601526 (2017). https://doi.org/10.1002/aenm.201601526

    Article  CAS  Google Scholar 

  200. Zhao, Y., Goncharova, L.V., Lushington, A., et al.: Superior stable and long life sodium metal anodes achieved by atomic layer deposition. Adv. Mater. 29, 1606663 (2017). https://doi.org/10.1002/adma.201606663

    Article  CAS  Google Scholar 

  201. Zhao, F.P., Zhao, Y., Wang, J., et al.: Tuning bifunctional interface for advanced sulfide-based all-solid-state batteries. Energy Storage Mater. 33, 139–146 (2020). https://doi.org/10.1016/j.ensm.2020.06.013

    Article  Google Scholar 

  202. Guan, D., Jeevarajan, J.A., Wang, Y.: Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin Al2O3 coatings. Nanoscale 3, 1465–1469 (2011). https://doi.org/10.1039/c0nr00939c

    Article  CAS  Google Scholar 

  203. Yu, M.P., Ma, J.S., Song, H.Q., et al.: Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium–sulfur batteries. Energy Environ. Sci. 9, 1495–1503 (2016). https://doi.org/10.1039/c5ee03902a

    Article  CAS  Google Scholar 

  204. Zheng, H.H., Sun, Q.N., Liu, G., et al.: Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells. J. Power Sources 207, 134–140 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.122

    Article  CAS  Google Scholar 

  205. Ren, X., Lau, K.C., Yu, M., et al.: Understanding side reactions in K-O2 batteries for improved cycle life. ACS Appl. Mater. Interfaces 6, 19299–19307 (2014). https://doi.org/10.1021/am505351s

    Article  CAS  Google Scholar 

  206. Tang, A., Bao, J., Skyllas-Kazacos, M.: Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery. J. Power Sources 196, 10737–10747 (2011). https://doi.org/10.1016/j.jpowsour.2011.09.003

    Article  CAS  Google Scholar 

  207. Arora, P., White, R.E., Doyle, M.: Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 145, 3647–3667 (1998). https://doi.org/10.1149/1.1838857

    Article  CAS  Google Scholar 

  208. Jang, D.H., Shin, Y.J., Oh, S.M.: Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells. J. Electrochem. Soc. 143, 2204–2211 (1996). https://doi.org/10.1149/1.1836981

    Article  CAS  Google Scholar 

  209. Xu, C., Sun, B., Gustafsson, T., et al.: Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. J. Mater. Chem. A 2, 7256–7264 (2014). https://doi.org/10.1039/c4ta00214h

    Article  CAS  Google Scholar 

  210. Guo, S., Li, Q., Liu, P., et al.: Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nat Commun. 8, 135 (2017). https://doi.org/10.1038/s41467-017-00157-8

    Article  CAS  Google Scholar 

  211. Xie, J., Liao, L., Gong, Y., et al.: Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Adv Sci (2017). https://doi.org/10.1126/sciadv.aao3170

    Article  Google Scholar 

  212. Pinkert, K., Oschatz, M., Borchardt, L., et al.: Role of surface functional groups in ordered mesoporous carbide-derived carbon/ionic liquid electrolyte double-layer capacitor interfaces. ACS Appl. Mater. Interfaces 6, 2922–2928 (2014). https://doi.org/10.1021/am4055029

    Article  CAS  Google Scholar 

  213. Qin, P.P., Wang, M., Li, N., et al.: Dual-ion batteries: bubble-sheet-like interface design with an ultrastable solid electrolyte layer for high-performance dual-ion batteries. Adv. Mater. 29, 1606805 (2017). https://doi.org/10.1002/adma.201606805

    Article  CAS  Google Scholar 

  214. Wang, J., Tang, J., Xu, Y.L., et al.: Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy 28, 232–240 (2016). https://doi.org/10.1016/j.nanoen.2016.08.043

    Article  CAS  Google Scholar 

  215. Agrawal, R.C., Pandey, G.P.: Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J. Phys. D: Appl. Phys. 41, 223001 (2008). https://doi.org/10.1088/0022-3727/41/22/223001

    Article  CAS  Google Scholar 

  216. Sun, C.W., Liu, J., Gong, Y.D., et al.: Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017). https://doi.org/10.1016/j.nanoen.2017.01.028

    Article  CAS  Google Scholar 

  217. Kato, Y., Hori, S., Saito, T., et al.: High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016). https://doi.org/10.1038/nenergy.2016.30

    Article  CAS  Google Scholar 

  218. Didwal, P.N., Singhbabu, Y.N., Verma, R., et al.: An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries. Energy Storage Mater. 37, 476–490 (2021). https://doi.org/10.1016/j.ensm.2021.02.034

    Article  Google Scholar 

  219. Cano-Banda, F., Singh, R., Hernandez-Guerrero, A., et al.: Enhanced performance of MgH2 composite electrode using glass-ceramic electrolytes for all-solid-state Li-ion batteries. J. Alloys Compd. 863, 158729 (2021). https://doi.org/10.1016/j.jallcom.2021.158729

    Article  CAS  Google Scholar 

  220. Shchelkanova, M.S., Shekhtman, G.S., Pershina, S.V., et al.: The study of sodium-vanadium oxide NaV3O8 as an electrode material for all-solid-state sodium-ion batteries. J. Alloys Compd. 864, 158516 (2021). https://doi.org/10.1016/j.jallcom.2020.158516

    Article  CAS  Google Scholar 

  221. Wang, J.L., Zhang, Z., Ying, H.J., et al.: In-situ formation of LiF-rich composite interlayer for dendrite-free all-solid-state lithium batteries. Chem. Eng. J. 411, 128534 (2021). https://doi.org/10.1016/j.cej.2021.128534

    Article  CAS  Google Scholar 

  222. Zhuang, H., Ma, W.C., Xie, J.W., et al.: Solvent-free synthesis of PEO/garnet composite electrolyte for high-safety all-solid-state lithium batteries. J. Alloys Compd. 860, 157915 (2021). https://doi.org/10.1016/j.jallcom.2020.157915

    Article  CAS  Google Scholar 

  223. Wu, L.P., Liu, G.Z., Wan, H.L., et al.: Superior lithium-stable Li7P2S8I solid electrolyte for all-solid-state lithium batteries. J. Power Sources 491, 229565 (2021). https://doi.org/10.1016/j.jpowsour.2021.229565

    Article  CAS  Google Scholar 

  224. Chen, C.G., Jiang, M., Zhou, T., et al.: Interface aspects in all-solid-state Li-based batteries reviewed. Adv. Energy Mater. 11, 2003939 (2021). https://doi.org/10.1002/aenm.202003939

    Article  CAS  Google Scholar 

  225. Liu, T.F., Zheng, J.L., Hu, H.L., et al.: In-situ construction of a Mg-modified interface to guide uniform lithium deposition for stable all-solid-state batteries. J. Energy Chem. 55, 272–278 (2021). https://doi.org/10.1016/j.jechem.2020.07.009

    Article  CAS  Google Scholar 

  226. TanBanerjeeChen, D.H.S.A.Z., et al.: From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2021). https://doi.org/10.1038/s41565-021-00877-5

    Article  CAS  Google Scholar 

  227. Donders, M.E., Arnoldbik, W.M., Knoops, H.C.M., et al.: Atomic layer deposition of LiCoO2 thin-film electrodes for all-solid-state Li-ion micro-batteries. J. Electrochem. Soc. 160, A3066–A3071 (2013). https://doi.org/10.1149/2.011305jes

    Article  CAS  Google Scholar 

  228. Fan, Z.J., Ding, B., Zhang, T.F., et al.: Solid/solid interfacial architecturing of solid polymer electrolyte–based all-solid-state lithium–sulfur batteries by atomic layer deposition. Small 15, 1903952 (2019). https://doi.org/10.1002/smll.201903952

    Article  CAS  Google Scholar 

  229. Chen, Y., Wen, K.H., Chen, T.H., et al.: Recent progress in all-solid-state lithium batteries: the emerging strategies for advanced electrolytes and their interfaces. Energy Storage Mater. 31, 401–433 (2020). https://doi.org/10.1016/j.ensm.2020.05.019

    Article  Google Scholar 

  230. Zheng, F., Kotobuki, M., Song, S.F., et al.: Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 389, 198–213 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.022

    Article  CAS  Google Scholar 

  231. Xie, Y., Zou, H.L., Xiang, H.F., et al.: Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes. J. Membr. Sci. 503, 25–30 (2016). https://doi.org/10.1016/j.memsci.2015.12.025

    Article  CAS  Google Scholar 

  232. Guan, C., Qian, X., Wang, X., et al.: Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode. Nanotechnology 26, 094001 (2015). https://doi.org/10.1088/0957-4484/26/9/094001

    Article  CAS  Google Scholar 

  233. Daubert, J.S., Lewis, N.P., Gotsch, H.N., et al.: Effect of meso- and micro-porosity in carbon electrodes on atomic layer deposition of pseudocapacitive V2O5 for high performance supercapacitors. Chem. Mater. 27, 6524–6534 (2015). https://doi.org/10.1021/acs.chemmater.5b01602

    Article  CAS  Google Scholar 

  234. Boukhalfa, S., Evanoff, K., Yushin, G.: Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ. Sci. 5, 6872 (2012). https://doi.org/10.1039/c2ee21110f

    Article  CAS  Google Scholar 

  235. Li, N., Lan, X.W., Wang, L.B., et al.: Precisely tunable T-Nb2O5 nanotubes via atomic layer deposition for fast-charging lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 16445–16453 (2021). https://doi.org/10.1021/acsami.1c02207

    Article  CAS  Google Scholar 

  236. Zhang, X.B., Shao, B.Y., Guo, A.P., et al.: Improved electrochemical performance of CoOx-NiO/Ti3C2Tx MXene nanocomposites by atomic layer deposition towards high capacitance supercapacitors. J. Alloys Compd. 862, 158546 (2021). https://doi.org/10.1016/j.jallcom.2020.158546

    Article  CAS  Google Scholar 

  237. Qi, F., Liu, K., Ma, D.K., et al.: Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol. J. Mater. Chem. A 9, 6790–6796 (2021). https://doi.org/10.1039/d0ta11457j

    Article  CAS  Google Scholar 

  238. Cao, Y.Q., Wang, S.S., Liu, C., et al.: Core–shell MWCNTs@ZnS composite prepared by atomic layer deposition for high-performance lithium-ion batteries anode. J. Mater. Res. 36, 1262–1271 (2021). https://doi.org/10.1557/s43578-021-00142-4

    Article  CAS  Google Scholar 

  239. Dufond, M.E., Chazalviel, J.N., Santinacci, L.: Electrochemical stability of n-Si photoanodes protected by TiO2 thin layers grown by atomic layer deposition. J. Electrochem. Soc. 168, 031509 (2021). https://doi.org/10.1149/1945-7111/abeaf3

    Article  CAS  Google Scholar 

  240. Xu, H.Y., Akbari, M.K., Kumar, S., et al.: Atomic layer deposition - state-of-the-art approach to nanoscale hetero-interfacial engineering of chemical sensors electrodes: a review. Sens. Actuat. B Chem. 331, 129403 (2021). https://doi.org/10.1016/j.snb.2020.129403

    Article  CAS  Google Scholar 

  241. Ng, S., Iffelsberger, C., Michalička, J., et al.: Atomic layer deposition of electrocatalytic insulator Al2O3 on three-dimensional printed nanocarbons. ACS Nano 15, 686–697 (2021). https://doi.org/10.1021/acsnano.0c06961

    Article  CAS  Google Scholar 

  242. Li, Z.S., Li, J.W., Liu, X., et al.: Progress in enhanced fluidization process for particle coating via atomic layer deposition. Chem. Eng. Process. Process. Intensif. 159, 108234 (2021). https://doi.org/10.1016/j.cep.2020.108234

    Article  CAS  Google Scholar 

  243. Gandla, D., Song, G.H., Wu, C.R., et al.: Atomic layer deposition (ALD) of alumina over activated carbon electrodes enabling a stable 4 V supercapacitor operation. ChemistryOpen 10, 402–407 (2021). https://doi.org/10.1002/open.202000352

    Article  CAS  Google Scholar 

  244. Oh, J., Seo, G., Kim, J., et al.: Plasma-enhanced atomic layer deposition of zirconium oxide thin films and its application to solid oxide fuel cells. Coatings 11, 362 (2021). https://doi.org/10.3390/coatings11030362

    Article  CAS  Google Scholar 

  245. Spajić, I., Rodič, P., Šekularac, G., et al.: The effect of surface preparation on the protective properties of Al2O3 and HfO2 thin films deposited on cp-titanium by atomic layer deposition. Electrochim. Acta 366, 137431 (2021). https://doi.org/10.1016/j.electacta.2020.137431

    Article  CAS  Google Scholar 

  246. Baker, J.G., Schneider, J.R., de Paula, C., et al.: Identification of highly active surface iron sites on Ni(OOH) for the oxygen evolution reaction by atomic layer deposition. J. Catal. 394, 476–485 (2021). https://doi.org/10.1016/j.jcat.2020.09.035

    Article  CAS  Google Scholar 

  247. Xia, X., Zeng, Z., Li, X., et al.: Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage. Nanoscale 5, 6040–6047 (2013). https://doi.org/10.1039/c3nr01606d

    Article  CAS  Google Scholar 

  248. Ahmed, B., Anjum, D.H., Gogotsi, Y., et al.: Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 34, 249–256 (2017). https://doi.org/10.1016/j.nanoen.2017.02.043

    Article  CAS  Google Scholar 

  249. Wang, D.R., Li, Y.L., Zhao, Y.T., et al.: Cycling-induced capacity increase of graphene aerogel/ZnO nanomembrane composite anode fabricated by atomic layer deposition. Nanoscale Res. Lett. 14, 69 (2019). https://doi.org/10.1186/s11671-019-2900-7

    Article  CAS  Google Scholar 

  250. Li, Y.L., Zhao, Y.T., Huang, G.S., et al.: ZnO nanomembrane/expanded graphite composite synthesized by atomic layer deposition as binder-free anode for lithium ion batteries. ACS Appl. Mater. Interfaces 9, 38522–38529 (2017). https://doi.org/10.1021/acsami.7b11735

    Article  CAS  Google Scholar 

  251. Zhao, Y.T., Huang, G.S., Wang, D.R., et al.: Sandwiched porous C/ZnO/porous C nanosheet battery anodes with a stable solid-electrolyte interphase for fast and long cycling. J. Mater. Chem. A 6, 22870–22878 (2018). https://doi.org/10.1039/c8ta07848c

    Article  CAS  Google Scholar 

  252. Blendinger, F., Seitz, D., Ottenschläger, A., et al.: Atomic layer deposition of bioactive TiO2 thin films on polyetheretherketone for orthopedic implants. ACS Appl. Mater. Interfaces 13, 3536–3546 (2021). https://doi.org/10.1021/acsami.0c17990

    Article  CAS  Google Scholar 

  253. Chang, H.K., Ko, D.S., Cho, D.H., et al.: Enhanced response of the photoactive gas sensor on formaldehyde using porous SnO2@TiO2 heterostructure driven by gas-flow thermal evaporation and atomic layer deposition. Ceram. Int. 47, 5985–5992 (2021). https://doi.org/10.1016/j.ceramint.2020.10.172

    Article  CAS  Google Scholar 

  254. Zhang, R.H., Li, Y., Qiao, L., et al.: Atomic layer deposition assisted superassembly of ultrathin ZnO layer decorated hierarchical Cu foam for stable lithium metal anode. Energy Storage Mater. 37, 123–134 (2021). https://doi.org/10.1016/j.ensm.2021.01.028

    Article  Google Scholar 

  255. Gehensel, R.J., Zierold, R., Schaan, G., et al.: Improved thermal stability of zirconia macroporous structures via homogeneous aluminum oxide doping and nanostructuring using atomic layer deposition. J. Eur. Ceram. Soc. 41, 4302–4312 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.02.007

    Article  CAS  Google Scholar 

  256. Zhao, Y.T., Huang, G.S., Li, Y.L., et al.: Three-dimensional carbon/ZnO nanomembrane foam as an anode for lithium-ion battery with long-life and high areal capacity. J. Mater. Chem. A 6, 7227–7235 (2018). https://doi.org/10.1039/c8ta00940f

    Article  CAS  Google Scholar 

  257. Kim, S.W., Han, T.H., Kim, J., et al.: Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. ACS Nano 3, 1085–1090 (2009). https://doi.org/10.1021/nn900062q

    Article  CAS  Google Scholar 

  258. Li, H., Gao, Y.H., Shao, Y.D., et al.: Vapor-phase atomic layer deposition of Co9S8 and its application for supercapacitors. Nano Lett. 15, 6689–6695 (2015). https://doi.org/10.1021/acs.nanolett.5b02508

    Article  CAS  Google Scholar 

  259. Nam, T., Seo, S., Kim, H.: Atomic layer deposition of a uniform thin film on two-dimensional transition metal dichalcogenides. J. Vac. Sci. Technol. A 38, 030803 (2020). https://doi.org/10.1116/6.0000068

    Article  CAS  Google Scholar 

  260. Luo, J.S., Xia, X.H., Luo, Y.S., et al.: Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 3, 737–743 (2013). https://doi.org/10.1002/aenm.201200953

    Article  CAS  Google Scholar 

  261. Gregorczyk, K.E., Kozen, A.C., Chen, X., et al.: Fabrication of 3D core-shell multiwalled carbon nanotube@RuO2 lithium-ion battery electrodes through a RuO2 atomic layer deposition process. ACS Nano 9, 464–473 (2015). https://doi.org/10.1021/nn505644q

    Article  CAS  Google Scholar 

  262. Naeem, F., Naeem, S., Zhao, Y., et al.: TiO2 nanomembranes fabricated by atomic layer deposition for supercapacitor electrode with enhanced capacitance. Nanoscale Res. Lett. 14, 92 (2019). https://doi.org/10.1186/s11671-019-2912-3

    Article  CAS  Google Scholar 

  263. Yu, L., Wang, G., Wan, G., et al.: Highly effective synthesis of NiO/CNT nanohybrids by atomic layer deposition for high-rate and long-life supercapacitors. Dalton Trans. 45, 13779–13786 (2016). https://doi.org/10.1039/c6dt01927g

    Article  CAS  Google Scholar 

  264. Fisher, R.A., Watt, M.R., Konjeti, R., et al.: Atomic layer deposition of titanium oxide for pseudocapacitive functionalization of vertically-aligned carbon nanotube supercapacitor electrodes. ECS J. Solid State Sci. Technol. 4, M1–M5 (2014). https://doi.org/10.1149/2.0141502jss

    Article  CAS  Google Scholar 

  265. Hai, Z.Y., Karbalaei Akbari, M., Xue, C.Y., et al.: Atomically-thin WO3/TiO2 heterojunction for supercapacitor electrodes developed by atomic layer deposition. Compos. Commun. 5, 31–35 (2017). https://doi.org/10.1016/j.coco.2017.06.001

    Article  Google Scholar 

  266. Velázquez-Martínez, V., Santasalo-Aarnio et al.: A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries 5, 68 (2019). https://doi.org/10.3390/batteries5040068

  267. Oviroh, P.O., Akbarzadeh, R., Pan, D.Q., et al.: New development of atomic layer deposition: processes, methods and applications. Sci. Technol. Adv. Mater. 20, 465–496 (2019). https://doi.org/10.1080/14686996.2019.1599694

    Article  Google Scholar 

  268. Choi, H., Lee, N., Park, H., et al.: Development of a SnS film process for energy device applications. Appl. Sci. 9, 4606 (2019). https://doi.org/10.3390/app9214606

    Article  CAS  Google Scholar 

  269. Nguyen, M.T., Yonezawa, T.: Sputtering onto a liquid: interesting physical preparation method for multi-metallic nanoparticles. Sci. Technol. Adv. Mater. 19, 883–898 (2018). https://doi.org/10.1080/14686996.2018.1542926

    Article  CAS  Google Scholar 

  270. Yabu, H.: Fabrication of honeycomb films by the breath figure technique and their applications. Sci. Technol. Adv. Mater. 19, 802–822 (2018). https://doi.org/10.1080/14686996.2018.1528478

    Article  CAS  Google Scholar 

  271. Dingemans, G., Jongbloed, B., Knaepen, W., et al.: Merits of batch ALD. ECS Trans. 64, 35–49 (2014). https://doi.org/10.1149/06409.0035ecst

    Article  CAS  Google Scholar 

  272. Knoops, H.C.M., Faraz, T., Arts, K., et al.: Status and prospects of plasma-assisted atomic layer deposition. J. Vac. Sci. Technol. A 37, 030902 (2019). https://doi.org/10.1116/1.5088582

    Article  CAS  Google Scholar 

  273. Boris, D.R., Anderson, V.R., Nepal, N., et al.: Effect of varying plasma properties on III-nitride film growth by plasma enhanced atomic layer epitaxy. J. Vac. Sci. Technol. A 36, 051503 (2018). https://doi.org/10.1116/1.5034247

    Article  CAS  Google Scholar 

  274. Faraz, T., Arts, K., Karwal, S., et al.: Energetic ions during plasma-enhanced atomic layer deposition and their role in tailoring material properties. Plasma Sources Sci. Technol. 28, 024002 (2019). https://doi.org/10.1088/1361-6595/aaf2c7

    Article  CAS  Google Scholar 

  275. Zhang, Y.C., Ding, Y.Y., Christofides, P.D.: Integrating feedback control and run-to-run control in multi-wafer thermal atomic layer deposition of thin films. Processes 8, 18 (2019). https://doi.org/10.3390/pr8010018

    Article  CAS  Google Scholar 

  276. Mackus, A.J.M., Merkx, M.J.M., Kessels, W.M.M.: From the bottom-up: toward area-selective atomic layer deposition with high selectivity. Chem. Mater. 31, 2–12 (2019). https://doi.org/10.1021/acs.chemmater.8b03454

    Article  CAS  Google Scholar 

  277. Jiang, X.R., Bent, S.F.: Area-selective ALD with soft lithographic methods: using self-assembled monolayers to direct film deposition. J. Phys. Chem. C 113, 17613–17625 (2009). https://doi.org/10.1021/jp905317n

    Article  CAS  Google Scholar 

  278. Vos, M.F.J., Chopra, S.N., Ekerdt, J.G., et al.: Atomic layer deposition and selective etching of ruthenium for area-selective deposition: temperature dependence and supercycle design. J. Vac. Sci. Technol. A 39, 032412 (2021). https://doi.org/10.1116/6.0000912

    Article  CAS  Google Scholar 

  279. Klement, P., Anders, D., Gümbel, L., et al.: Surface diffusion control enables tailored-aspect-ratio nanostructures in area-selective atomic layer deposition. ACS Appl. Mater. Interfaces 13, 19398–19405 (2021). https://doi.org/10.1021/acsami.0c22121

    Article  CAS  Google Scholar 

  280. Parsons, G.N., Clark, R.D.: Area-selective deposition: fundamentals, applications, and future outlook. Chem. Mater. 32, 4920–4953 (2020). https://doi.org/10.1021/acs.chemmater.0c00722

    Article  CAS  Google Scholar 

  281. Cao, K., Cai, J.M., Liu, X., et al.: Review article: catalysts design and synthesis via selective atomic layer deposition. J. Vac. Sci. Technol. A Vac. Surf. Films 36, 010801 (2018) https://doi.org/10.1116/1.5000587

  282. Ras, R.H.A., Sahramo, E., Malm, J., et al.: Blocking the lateral film growth at the nanoscale in area-selective atomic layer deposition. J. Am. Chem. Soc. 130, 11252–11253 (2008). https://doi.org/10.1021/ja803471g

    Article  CAS  Google Scholar 

  283. Mackus, A.J.M., Verheijen, M.A., Leick, N., et al.: Influence of oxygen exposure on the nucleation of platinum atomic layer deposition: consequences for film growth, nanopatterning, and nanoparticle synthesis. Chem. Mater. 25, 1905–1911 (2013). https://doi.org/10.1021/cm400562u

    Article  CAS  Google Scholar 

  284. Avila, J.R., DeMarco, E.J., Emery, J.D., et al.: Real-time observation of atomic layer deposition inhibition: metal oxide growth on self-assembled alkanethiols. ACS Appl. Mater. Interfaces 6, 11891–11898 (2014). https://doi.org/10.1021/am503008j

    Article  CAS  Google Scholar 

  285. Cook, R.C., Stevens, R., Schwartz, P., et al.: Substrate carrier for parallel wafer processing reactor, US20050188923A1

  286. Lankhorst, A.M., Paarhuis, B.D., Terhorst, H.J.C.M., et al.: Transient ALD simulations for a multi-wafer reactor with trenched wafers. Surf. Coat. Technol. 201, 8842–8848 (2007). https://doi.org/10.1016/j.surfcoat.2007.04.079

    Article  CAS  Google Scholar 

  287. Granneman, E., Fischer, P., Pierreux, D., et al.: Batch ALD: characteristics, comparison with single wafer ALD, and examples. Surf. Coat. Technol. 201, 8899–8907 (2007). https://doi.org/10.1016/j.surfcoat.2007.05.009

    Article  CAS  Google Scholar 

  288. Shirazi, M., Elliott, S.D.: Atomistic kinetic Monte Carlo study of atomic layer deposition derived from density functional theory. J. Comput. Chem. 35, 244–259 (2014). https://doi.org/10.1002/jcc.23491

    Article  CAS  Google Scholar 

  289. Ding, Y.Y., Zhang, Y.C., Orkoulas, G., et al.: Microscopic modeling and optimal operation of plasma enhanced atomic layer deposition. Chem. Eng. Res. Des. 159, 439–454 (2020). https://doi.org/10.1016/j.cherd.2020.05.014

    Article  CAS  Google Scholar 

  290. Deng, Z., He, W.J., Duan, C.L., et al.: Atomic layer deposition process optimization by computational fluid dynamics. Vacuum 123, 103–110 (2016). https://doi.org/10.1016/j.vacuum.2015.10.023

    Article  CAS  Google Scholar 

  291. Zhang, Y.C., Ding, Y.Y., Christofides, P.D.: Multiscale computational fluid dynamics modeling of thermal atomic layer deposition with application to chamber design. Chem. Eng. Res. Des. 147, 529–544 (2019). https://doi.org/10.1016/j.cherd.2019.05.049

    Article  CAS  Google Scholar 

  292. Ding, Y.Y., Zhang, Y.C., Ren, Y.M., et al.: Machine learning-based modeling and operation for ALD of SiO2 thin-films using data from a multiscale CFD simulation. Chem. Eng. Res. Des. 151, 131–145 (2019). https://doi.org/10.1016/j.cherd.2019.09.005

    Article  CAS  Google Scholar 

  293. Poodt, P., Cameron, D.C., Dickey, E., et al.: Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition. J. Vac. Sci. Technol. A 30, 010802 (2012). https://doi.org/10.1116/1.3670745

    Article  CAS  Google Scholar 

  294. Suntola, T., Antson, J.: Growth of thin films of compounds on base materials-by alternate deposition of mono-atomic layers of the individual elements, CS7508087-A

  295. Suntola, T.S., Lindfors, S.G., Antson, J.O., et al.: Multicolour electroluminescent display device-comprising two electroluminescent layers with a light filter interposed therebetween, GB2074786-B

  296. Yersak, A.S., Sharma, K., Wallas, J.M., et al.: Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes. J. Vac. Sci. Technol. A 36, 01A123 (2018). https://doi.org/10.1116/1.5006670

    Article  CAS  Google Scholar 

  297. Levy, D.H., Freeman, D., Nelson, S.F., et al.: Stable ZnO thin film transistors by fast open air atomic layer deposition. Appl. Phys. Lett. 92, 192101 (2008). https://doi.org/10.1063/1.2924768

    Article  CAS  Google Scholar 

  298. Munoz-Rojas, D., Sun, H., Iza, D.C., et al.: High-speed atmospheric atomic layer deposition of ultra thin amorphous TiO2 blocking layers at 100 °C for inverted bulk heterojunction solar cells. Prog. Photovoltaics 21, 393–400 (2013). https://doi.org/10.1002/pip.2380

    Article  CAS  Google Scholar 

  299. Poodt, P., Lankhorst, A., Roozeboom, F., et al.: High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 22, 3564–3567 (2010). https://doi.org/10.1002/adma.201000766

    Article  CAS  Google Scholar 

  300. Maydannik, P.S., Kääriäinen, T.O., Cameron, D.C.: An atomic layer deposition process for moving flexible substrates. Chem. Eng. J. 171, 345–349 (2011). https://doi.org/10.1016/j.cej.2011.03.097

    Article  CAS  Google Scholar 

  301. Zhao, Y., Zhang, L., Liu, J., et al.: Atomic/molecular layer deposition for energy storage and conversion. Chem. Soc. Rev. 50, 3889–3956 (2021). https://doi.org/10.1039/d0cs00156b

    Article  CAS  Google Scholar 

  302. Musselman, K.P., Muñoz-Rojas, D., Hoye, R.L.Z., et al.: Rapid open-air deposition of uniform, nanoscale, functional coatings on nanorod arrays. Nanoscale Horiz. 2, 110–117 (2017). https://doi.org/10.1039/c6nh00197a

    Article  CAS  Google Scholar 

  303. van den Bruele, F.J., Smets, M., Illiberi, A., et al.: Atmospheric pressure plasma enhanced spatial ALD of silver. J. Vac. Sci. Technol. A 33, 01A131 (2015). https://doi.org/10.1116/1.4902561

    Article  CAS  Google Scholar 

  304. Creyghton, Y., Illiberi, A., Mione, A., et al.: Plasma-enhanced atmospheric-pressure spatial ALD of Al2O3 and ZrO2. ECS Trans. 75, 11–19 (2016). https://doi.org/10.1149/07506.0011ecst

    Article  CAS  Google Scholar 

  305. Mione, M.A., Katsouras, I., Creyghton, Y., et al.: Atmospheric pressure plasma enhanced spatial ALD of ZrO2 for low-temperature, large-area applications. ECS J. Solid State Sci. Technol. 6, N243–N249 (2017). https://doi.org/10.1149/2.0381712jss

    Article  CAS  Google Scholar 

  306. Hoffmann, L., Brinkmann, K.O., Malerczyk, J., et al.: Spatial atmospheric pressure atomic layer deposition of tin oxide as an impermeable electron extraction layer for perovskite solar cells with enhanced thermal stability. ACS Appl. Mater. Interfaces 10, 6006–6013 (2018). https://doi.org/10.1021/acsami.7b17701

    Article  CAS  Google Scholar 

  307. Hoffmann, L., Theirich, D., Pack, S., et al.: Gas diffusion barriers prepared by spatial atmospheric pressure plasma enhanced ALD. ACS Appl. Mater. Interfaces 9, 4171–4176 (2017). https://doi.org/10.1021/acsami.6b13380

    Article  CAS  Google Scholar 

  308. Hoffmann, L., Theirich, D., Schlamm, D., et al.: Atmospheric pressure plasma enhanced spatial atomic layer deposition of SnOx as conductive gas diffusion barrier. J. Vac. Sci. Technol. A Vac. Surf. Films 36, 01A112 (2018) https://doi.org/10.1116/1.5006781

  309. Seville, J.P.K., Willett, C.D., Knight, P.C.: Interparticle forces in fluidisation: a review. Powder Technol. 113, 261–268 (2000). https://doi.org/10.1016/S0032-5910(00)00309-0

    Article  CAS  Google Scholar 

  310. Valverde, J.M., Castellanos, A.: Magnetic field assisted fluidization: a modified Richardson-Zaki equation. China Particuol. 5, 61–70 (2007). https://doi.org/10.1016/j.cpart.2007.01.001

    Article  CAS  Google Scholar 

  311. Espin, M.J., Valverde, J.M., Quintanilla, M.A., et al.: Electromechanics of fluidized beds of nanoparticles. Phys. Rev. E 79, 011304 (2009). https://doi.org/10.1103/physreve.79.011304

    Article  CAS  Google Scholar 

  312. van Ommen, J.R., Yurteri, C.U., Ellis, N., et al.: Scalable gas-phase processes to create nanostructured particles. Particuology 8, 572–577 (2010). https://doi.org/10.1016/j.partic.2010.07.010

    Article  CAS  Google Scholar 

  313. Ferguson, J.D., Buechler, K.J., Weimer, A.W., et al.: SnO2 atomic layer deposition on ZrO2 and Al nanoparticles: pathway to enhanced thermite materials. Powder Technol. 156, 154–163 (2005). https://doi.org/10.1016/j.powtec.2005.04.009

    Article  CAS  Google Scholar 

  314. McCormick, J.A., Cloutier, B.L., Weimer, A.W., et al.: Rotary reactor for atomic layer deposition on large quantities of nanoparticles. J. Vac. Sci. Technol. A 25, 67–74 (2007). https://doi.org/10.1116/1.2393299

    Article  CAS  Google Scholar 

  315. Adhikari, S., Selvaraj, S., Kim, D.H.: Progress in powder coating technology using atomic layer deposition. Adv. Mater. Interfaces 5, 1801853 (2018). https://doi.org/10.1002/admi.201801853

    Article  Google Scholar 

  316. Nakamura, H., Watano, S.: Fundamental particle fluidization behavior and handling of nano-particles in a rotating fluidized bed. Powder Technol. 183, 324–332 (2008). https://doi.org/10.1016/j.powtec.2008.01.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (No. 51961145108, 61975035, and 51850410502) and the Science and Technology Commission of Shanghai Municipality (No. 21142200200, 19XD1400600, 20501130700, and 19JC1415500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Mei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Huang, G., Kong, Y. et al. Atomic Layer Deposition for Electrochemical Energy: from Design to Industrialization. Electrochem. Energy Rev. 5 (Suppl 1), 31 (2022). https://doi.org/10.1007/s41918-022-00146-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00146-6

Keywords

Navigation