Skip to main content
Log in

Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Critical limitations in applying MgH2 as a hydrogen-storage medium include the high H2 desorption temperature and slow reaction kinetics. In this study, we synthesized hierarchical porous TiNb2O7 spheres in micrometer scale built with 20–50 nm nanospheres, which showed stable activity to catalyze hydrogen storage in MgH2 as precursors. The addition of 7 wt.% TiNb2O7 in MgH2 reduced the dehydrogenation onset temperature from 300 to 177 °C. At 250 °C, approximately 5.5 wt.% H2 was rapidly released in 10 min. Hydrogen uptake was detected even at room temperature under 50 bar hydrogen; 4.5 wt.% H2 was absorbed in 3 min at 150 °C, exhibiting a superior low-temperature hydrogenation performance. Moreover, nearly constant capacity was observed from the second cycle onward, demonstrating stable cyclability. During the ball milling and initial de/hydrogenation process, the high-valent Ti and Nb of TiNb2O7 were reduced to the lower-valent species or even zero-valent metal, which in situ created multivalent multielement catalytic surroundings. A strong synergistic effect was obtained for hybrid oxides of Nb and Ti by density functional theory (DFT) calculations, which largely weakens the Mg-H bonding and results in a large reduction in kinetic barriers for hydrogen storage reactions of MgH2. Our findings may guide the further design and development of high-performance complex catalysts for the reversible hydrogen storage of hydrides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tollefson, J. Hydrogen vehicles: Fuel of the future? Nature 2010, 464, 1262–1264.

    CAS  Google Scholar 

  2. He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16059.

    CAS  Google Scholar 

  3. Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358.

    CAS  Google Scholar 

  4. Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J. High capacity hydrogenstorage materials: Attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 2010, 39, 656–675.

    CAS  Google Scholar 

  5. Eberle, U.; Felderhoff, M.; Schüth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem., Int. Ed. 2009, 48, 6608–6630.

    CAS  Google Scholar 

  6. Mohtadi, R.; Orimo, S. I. The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2017, 2, 16091.

    Google Scholar 

  7. Jain, I. P.; Lal, C.; Jain, A. Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy 2010, 35, 5133–5144.

    CAS  Google Scholar 

  8. Yartys, V. A.; Lototskyy, M. V.; Akiba, E.; Albert, R.; Antonov, V. E.; Ares, J. R.; Baricco, M.; Bourgeois, N.; Buckley, C. E.; von Colbe, J. M. B. et al. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrogen Energy 2019, 44, 7809–7859.

    CAS  Google Scholar 

  9. Aguey-Zinsou, K. F.; Ares-Fernández, J. R. Hydrogen in magnesium: New perspectives toward functional stores. Energy Environ. Sci. 2010, 3, 526–543.

    CAS  Google Scholar 

  10. Zhang, J. G.; Zhu, Y. F.; Yao, L. L.; Xu, C.; Liu, Y. N.; Li, L. Q. State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage. J. Alloys Compd. 2019, 782, 796–823.

    CAS  Google Scholar 

  11. Zhang, X. L.; Liu, Y. F.; Zhang, X.; Hu, J. J.; Gao, M. X.; Pan, H. G. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater. Today Nano 2020, 9, 100064.

    Google Scholar 

  12. Sun, Y. H.; Shen, C. Q.; Lai, Q. W.; Liu, W.; Wang, D. W.; Aguey-Zinsou, K. F. Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art. Energy Storage Mater. 2018, 10, 168–198.

    Google Scholar 

  13. Sadhasivam, T.; Kim, H. T.; Jung, S.; Roh, S. H.; Park, J. H.; Jung, H. Y. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review. Renew. Sust. Energ. Rev. 2017, 72, 523–534.

    CAS  Google Scholar 

  14. Xie, X. B.; Chen, M.; Hu, H. M.; Wang, B. L.; Yu, R. H.; Liu, T. Recent advances in magnesium-based hydrogen storage materials with multiple catalysts. Int. J. Hydrogen Energy 2019, 44, 10694–10712.

    CAS  Google Scholar 

  15. Webb, C. J. A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. J. Phys. Chem. Solids 2015, 84, 96–106.

    CAS  Google Scholar 

  16. Zaluska, A.; Zaluski, L.; Ström-Olsen, J. O. Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 1999, 288, 217–225.

    CAS  Google Scholar 

  17. Lim, K. L.; Kazemian, H.; Yaakob, Z.; Daud, W. R. W. Solid-state materials and methods for hydrogen storage: A critical review. Chem. Eng. Technol. 2010, 33, 213–226.

    CAS  Google Scholar 

  18. Liang, G.; Huot, J.; Boily, S.; van Neste, A.; Schulz, R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 1999, 292, 247–252.

    CAS  Google Scholar 

  19. Shang, C. X.; Bououdina, M.; Song, Y.; Guo, Z. X. Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. Int. J. Hydrogen Energy 2004, 29, 73–80.

    CAS  Google Scholar 

  20. Hanada, N.; Ichikawa, T.; Fujii, H. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. J. Phys. Chem. B 2005, 109, 7188–7194.

    CAS  Google Scholar 

  21. Wronski, Z. S.; Carpenter, G. J. C.; Czujko, T.; Varin, R. A. A new nanonickel catalyst for hydrogen storage in solid-state magnesium hydrides. Int. J. Hydrogen Energy 2011, 36, 1159–1166.

    CAS  Google Scholar 

  22. Barkhordarian, G.; Klassen, T.; Bormann, R. Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J. Alloys Compd. 2004, 364, 242–246.

    CAS  Google Scholar 

  23. Hanada, N.; Ichikawa, T.; Fujii, H. Hydrogen absorption kinetics of the catalyzed MgH2 by niobium oxide. J. Alloys Compd. 2007, 446–447, 67–71.

    Google Scholar 

  24. Friedrichs, O.; Klassen, T.; Sánchez-López, J. C.; Bormann, R.; Fernández, A. Hydrogen sorption improvement of nanocrystalline MgH2 by Nb2O5 nanoparticles. Scr. Mater. 2006, 54, 1293–1297.

    CAS  Google Scholar 

  25. Wang, K.; Zhang, X.; Ren, Z. H.; Zhang, X. L.; Hu, J. J.; Gao, M. X.; Pan, H. G.; Liu, Y. F. Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature. Energy Storage Mater. 2019, 23, 79–87.

    Google Scholar 

  26. Ma, T.; Isobe, S.; Wang, Y. M.; Hashimoto, N.; Ohnuki, S. Nb-gateway for hydrogen desorption in Nb2O5 catalyzed MgH2 nanocomposite. J. Phys. Chem. C 2013, 117, 10302–10307.

    CAS  Google Scholar 

  27. Friedrichs, O.; Sánchez-López, J. C.; López-Cartes, C.; Klassen, T.; Bormann, R.; Fernández, A. Nb2O5 “pathway effect” on hydrogen sorption in Mg. J. Phys. Chem. B 2006, 110, 7845–7850.

    CAS  Google Scholar 

  28. Oelerich, W.; Klassen, T.; Bormann, R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloys Compd. 2001, 315, 237–242.

    CAS  Google Scholar 

  29. Jung, K. S.; Kim, D. H.; Lee, E. Y.; Lee, K. S. Hydrogen sorption of magnesium hydride doped with nano-sized TiO2. Catal. Today 2007, 120, 270–275.

    CAS  Google Scholar 

  30. Croston, D. L.; Grant, D. M.; Walker, G. S. The catalytic effect of titanium oxide based additives on the dehydrogenation and hydrogenation of milled MgH2. J. Alloys Compd. 2010, 492, 251–258.

    CAS  Google Scholar 

  31. Jardim, P. M.; da Conceição, M. O. T.; Brum, M. C.; dos Santos, D. S. Hydrogen sorption kinetics of ball-milled MgH2-TiO2 based 1D nanomaterials with different morphologies. Int. J. Hydrogen Energy 2015, 40, 17110–17117.

    CAS  Google Scholar 

  32. Zhang, X.; Leng, Z. H.; Gao, M. X.; Hu, J. J.; Du, F.; Yao, J. H.; Pan, H. G.; Liu, Y. F. Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2. J. Power Sources 2018, 398, 183–192.

    CAS  Google Scholar 

  33. Zhang, J.; Shan, J. W.; Li, P.; Zhai, F. Q.; Wan, Q.; Liu, Z. J.; Qu, X. H. Dehydrogenation mechanism of ball-milled MgH2 doped with ferrites (CoFe2O4, ZnFe2O4, MnFe2O4 and Mn0.5Zn0.5Fe2O4) nanoparticles. J. Alloys Compd. 2015, 643, 174–180.

    CAS  Google Scholar 

  34. Ali, N. A.; Idris, N. H.; Md Din, M. F.; Mustafa, N. S.; Sazelee, N. A.; Halim Yap, F. A.; Sulaiman, N. N.; Yahya, M. S.; Ismail, M. Nanolayer-like-shaped MgFe2O4 synthesised via a simple hydrothermal method and its catalytic effect on the hydrogen storage properties of MgH2. RSC Adv. 2018, 8, 15667–15674.

    CAS  Google Scholar 

  35. Ismail, M.; Mustafa, N. S.; Ali, N. A.; Sazelee N. A.; Yahya, M. S. The hydrogen storage properties and catalytic mechanism of the CuFe2O4-doped MgH2 composite system. Int. J. Hydrogen Energy 2019, 44, 318–324.

    CAS  Google Scholar 

  36. Wan, Q.; Li, P.; Shan, J. W.; Zhai, F. Q.; Li, Z. L.; Qu, X. H. Superior catalytic effect of nickel ferrite nanoparticles in improving hydrogen storage properties of MgH2. J. Phys. Chem. C 2015, 119, 2925–2934.

    CAS  Google Scholar 

  37. Huang, X.; Xiao, X. Z.; Wang, X. C.; Wang, C. T.; Fan, X. L.; Tang, Z. C.; Wang, C. Y.; Wang, Q. D.; Chen, L. X. Synergistic catalytic activity of porous rod-like TMTiO3 (TM = Ni and Co) for reversible hydrogen storage of magnesium hydride. J. Phys. Chem. C 2018, 122, 27973–27982.

    CAS  Google Scholar 

  38. Zhang, X.; Shen, Z. Y.; Jian, N.; Hu, J. J.; Du, F.; Yao, J. H.; Gao, M. X.; Liu, Y. F.; Pan, H. G. A novel complex oxide TiVO3.5 as a highly active catalytic precursor for improving the hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 2018, 43, 23327–23335.

    CAS  Google Scholar 

  39. Valentoni, A.; Mulas, G.; Enzo, S.; Garroni, S. Remarkable hydrogen storage properties of MgH2 doped with VNbO5. Phys. Chem. Chem. Phys. 2018, 20, 4100–4108.

    CAS  Google Scholar 

  40. Cui, J.; Wang, H.; Liu, J. W.; Ouyang, L. Z.; Zhang, Q. G.; Sun, D. L.; Yao, X. D.; Zhu, M. Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. J. Mater. Chem. A 2013, 7, 5603–5611.

    Google Scholar 

  41. Zaluska, A.; Zaluski, L.; Ström-Olsen, J. O. Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A 2001, 72, 157–165.

    CAS  Google Scholar 

  42. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristall. 2005, 220, 567–570.

    CAS  Google Scholar 

  43. McNellis, E. R.; Meyer, J.; Reuter, K. Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions. Phys. Rev. B 2009, 80, 205414.

    Google Scholar 

  44. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    Article  CAS  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  46. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 73, 5188–5192.

    Google Scholar 

  47. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Google Scholar 

  48. Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28, 250–258.

    CAS  Google Scholar 

  49. Wang, Z. Y.; Zhang, X. L.; Ren, Z. H.; Liu, Y.; Hu, J. J.; Li, H. W.; Gao, M. X.; Pan, H. G.; Liu, Y. F. In situ formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH2. J. Mater. Chem. A 2019, 7, 14244–14252.

    CAS  Google Scholar 

  50. Werfel, F.; Brümmer, O. Corundum structure oxides studied by XPS. Phys. Scr. 1983, 28, 92–96.

    CAS  Google Scholar 

  51. Garbassi, F.; Bart, J. C. J.; Petrini, G. XPS study of tellurium-niobium and tellurium—tantalum oxide systems. J. Electron Spectrosc. 1981, 22, 95–107.

    CAS  Google Scholar 

  52. Vajeeston, P.; Ravindran, P.; Hauback, B. C.; Fjellvåg, H.; Kjekshus, A.; Furuseth, S.; Hanfland, M. Structural stability and pressure-induced phase transitions in MgH2. Phys. Rev. B 2006, 73, 224102.

    Google Scholar 

  53. Milošević, S.; Kurko, S.; Pasquini, L.; Matović, L.; Vujasin, R.; Novaković, N.; Novaković, J. G. Fast hydrogen sorption from MgH2-VO2(B) composite materials. J. Power Sources 2016, 307, 481–488.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFB1502102), the National Natural Science Foundation of China (Nos. 51671172 and U1601212), and the National Youth Top-Notch Talent Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Liu.

Electronic Supplementary Material

12274_2020_3058_MOESM1_ESM.pdf

Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, K., Liu, Y. et al. Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2. Nano Res. 14, 148–156 (2021). https://doi.org/10.1007/s12274-020-3058-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3058-4

Keywords

Navigation