Skip to main content
Log in

Vacancy-defect-dipole amplifies the thermoacoustic conversion efficiency of carbon nanoprobes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The immense potential of carbon nanoprobes (CNPs) for using as contrast agents has propelled much recent research and development in the field of thermoacoustic (TA) molecular imaging, while the proper engineering and design of such materials with required high TA conversion efficiency is still a highly challenging task. In this work, we proposed a controllable strategy to amplify the TA conversion efficiency of the CNPs by constructing vacancy defect (VD) dipoles, and systematically demonstrated the amplification mechanism through theoretical and experimental investigations. First-principles calculation results indicate that, when a carbon atom is removed from the CNPs by chemical approach, owing to local electron density redistribution, the VDs are formed at the positions of the original carbon atoms and act as the structural origin of permanent electric dipoles with the dipole moment several orders higher than that of non-defect sites. Under pulsed microwave irradiation, the VD dipoles are polarized repeatedly and significantly contribute to the conversion efficiency from absorbed electromagnetic waves to ultrasound through enhanced dielectric relaxation losses. We experimentally synthesized graphene samples with different VD densities and VD types to demonstrate the efficiency of the proposed strategy, and results coincide well with the theoretical proposition. This work offers feasible guidance to the systematic development and rational design of new high-conversion-efficiency TA CNPs via VD engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X.; Bauer, D. R.; Witte, R.; Xin, H. Microwave-induced thermoacoustic imaging model for potential breast cancer detection. IEEE Trans. Biomed. Eng.2012, 59, 2782–2791.

    Google Scholar 

  2. Huang, L.; Yao, L.; Liu, L. X.; Rong, J.; Jiang, H. B. Quantitative thermoacoustic tomography: Recovery of conductivity maps of heterogeneous media. Appl. Phys. Lett.2012, 101, 244106.

    Google Scholar 

  3. Lou, C. G.; Yang, S. H.; Ji, Z.; Chen, Q.; Xing, D. Ultrashort microwave-induced thermoacoustic imaging: A breakthrough in excitation efficiency and spatial resolution. Phys. Rev. Lett.2012, 109, 218101.

    Google Scholar 

  4. Gao, F.; Zheng, Y. J.; Wang, D. F. Microwave-acoustic phasoscopy for tissue characterization. Appl. Phys. Lett.2012, 101, 043702.

    Google Scholar 

  5. Luo, W. L.; Ji, Z.; Yang, S. H.; Xing, D. Microwave-pumped electric-dipole resonance absorption for noninvasive functional imaging. Phys. Rev. Appl.2018, 10, 024044.

    CAS  Google Scholar 

  6. Pramanik, M.; Ku, G.; Li, C. H.; Wang, L. V. Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (ta) and photoacoustic (pa) tomography. Med. Phys.2008, 35, 2218–2223.

    Google Scholar 

  7. Zheng, Z.; Huang, L.; Jiang, H. B. Label-free thermoacoustic imaging of human blood vessels in vivo. Appl. Phys. Lett.2018, 113, 253702.

    Google Scholar 

  8. Cao, C. J.; Nie, L. M.; Lou, C. G.; Xing, D. The feasibility of using microwave-induced thermoacoustic tomography for detection and evaluation of renal calculi. Phys. Med. Biol.2010, 55, 5203–5212.

    Google Scholar 

  9. Wen, L. W.; Ding, W. Z.; Yang, S. H.; Xing, D. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes. Biomaterials2016, 75, 163–173.

    CAS  Google Scholar 

  10. Nie, L. M.; Xing, D.; Zhou, Q.; Yang, D. W.; Guo, H. Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging. Med. Phys.2008, 35, 4026–4032.

    Google Scholar 

  11. Nie, L. M.; Xing, D.; Yang, S. H. In vivo detection and imaging of low-density foreign body with microwave-induced thermoacoustic tomography. Med. Phys.2009, 36, 3429–3437.

    Google Scholar 

  12. Wang, X.; Qin, T.; Witte, R. S.; Xin, H. Computational feasibility study of contrast-enhanced thermoacoustic imaging for breast cancer detection using realistic numerical breast phantoms. IEEE Trans. Microw. Theory Tech.2015, 63, 1489–1501.

    CAS  Google Scholar 

  13. Jin, X.; Wang, L. V. Thermoacoustic tomography with correction for acoustic speed variations. Phys. Med. Biol.2006, 51, 6437–6448.

    Google Scholar 

  14. Lazebnik, M.; Popovic, D.; McCartney, L.; Watkins, C. B.; Lindstrom, M. J.; Harter, J.; Sewall, S.; Ogilvie, T.; Magliocco, A.; Breslin, T. M. et al. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys. Med. Biol.2007, 52, 6093–6115.

    Google Scholar 

  15. Nie, L. N.; Ou, Z. M.; Yang, S. H.; Xing, D. Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection. Med. Phys.2010, 37, 4193–4200.

    CAS  Google Scholar 

  16. Pramanik, M.; Swierczewska, M.; Green, D.; Sitharaman, B.; Wang, L. V. Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J. Biomed. Opt.2009, 14, 034018.

    Google Scholar 

  17. Wu, D.; Huang, L.; Jiang, M.; Jiang, H. B. Contrast agents for photoacoustic and thermoacoustic imaging: A review. Int. J. Mol. Sci.2014, 15, 23616–23639.

    Google Scholar 

  18. Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.2008, 1, 203–212.

    CAS  Google Scholar 

  19. Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q. Z.; Chen, X. Y.; Dai, H. J. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res.2008, 68, 6652–6660.

    CAS  Google Scholar 

  20. Lalwani, G.; Cai, X.; Nie, L. M.; Wang, L. V.; Sitharaman, B. Graphene-based contrast agents for photoacoustic and thermoacoustic tomography. Photoacoustics2013, 1, 62–67.

    Google Scholar 

  21. Wang, X.; Witte, R. S.; Xin, H. Thermoacoustic and photoacoustic characterizations of few-layer graphene by pulsed excitations. Appl. Phys. Lett.2016, 108, 143104.

    Google Scholar 

  22. Gao, F.; Zheng, Y. J.; Feng, X. H.; Ohl, C. D. Thermoacoustic resonance effect and circuit modelling of biological tissue. Appl. Phys. Lett.2013, 102, 063702.

    Google Scholar 

  23. Zhang, X. F.; Guo, J. J.; Guan, P. F.; Qin, G. W.; Pennycook, S. J. Gigahertz dielectric polarization of substitutional single niobium atoms in defective graphitic layers. Phys. Rev. Lett.2015, 115, 147601.

    Google Scholar 

  24. Ku, G.; Wang, L. V. Scanning microwave - induced thermoacoustic tomography: Signal, resolution, and contrast. Med. Phys.2001, 28, 4–10.

    CAS  Google Scholar 

  25. Ning, M. Q.; Lu, M. M.; Li, J. B.; Chen, Z.; Dou, Y. K.; Wang, C. Z.; Rehman, F.; Cao, M. S.; Jin, H. B. Two-dimensional nanosheets of MoS2: A promising material with high dielectric properties and microwave absorption performance. Nanoscale2015, 7, 15734–15740.

    CAS  Google Scholar 

  26. Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk-shell Fe3O4@ N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519.

    CAS  Google Scholar 

  27. Kuang, B. Y.; Song, W. L.; Ning, M. Q.; Li, J. B.; Zhao, Z. J.; Guo, D. Y.; Cao, M. S.; Jin, H. B. Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon2018, 127, 209–217.

    CAS  Google Scholar 

  28. Chen, H. Q.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater.2008, 20, 3557–3561.

    CAS  Google Scholar 

  29. Kumar, S.; Parekh, S. H. Linking graphene-based material physicochemical properties with molecular adsorption, structure and cell fate. Commun. Chem.2020, 3, 8.

    CAS  Google Scholar 

  30. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater.2007, 6, 183–191.

    CAS  Google Scholar 

  31. Gao, J.; Liu, F.; Liu, Y. L.; Ma, N.; Wang, Z. Q.; Zhang, X. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater.2010, 22, 2213–2218.

    CAS  Google Scholar 

  32. Chen, C. Y.; Chen, Y. C.; Hong, Y. T.; Lee, T. W.; Huang, J. F. Facile fabrication of ascorbic acid reduced graphene oxide-modified electrodes toward electroanalytical determination of sulfamethoxazole in aqueous environments. Chem. Eng. J.2018, 352, 188–197.

    CAS  Google Scholar 

  33. Li, Y. P.; Tan, Q. H.; Qin, H.; Xing, D. Defect-rich single-layer MoS2 nanosheets with high dielectric-loss for contrast-enhanced thermoacoustic imaging of breast tumor. Appl. Phys. Lett.2019, 115, 073701.

    Google Scholar 

  34. Coelho, R. Physics of dielectrics for the engineer; Elsevier: New York, 2012.

    Google Scholar 

  35. Metaxas, A. C.; Meredith, R. J. Industrial microwave heating; Peter Peregrinus Ltd. on behalf of the Institution of Electrical Engineers: London, 1983.

    Google Scholar 

  36. Meng, B. S.; Klein, B. D. B.; Booske, J. H.; Cooper, R. F. Microwave absorption in insulating dielectric ionic crystals including the role of point defects. Phys. Rev. B1996, 53, 12777–12785.

    CAS  Google Scholar 

  37. Gholizadeh, R.; Yu, Y. X. Work functions of pristine and heteroatom-doped graphenes under different external electric fields: An ab initio dft study. J. Phys. Chem. C2014, 118, 28274–28282.

    CAS  Google Scholar 

  38. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    CAS  Google Scholar 

  39. Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem.2010, 2, 581–587.

    CAS  Google Scholar 

  40. Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren, W. C.; Cheng, H. M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon2010, 48, 4466–4474.

    CAS  Google Scholar 

  41. Wen, B.; Wang, X. X.; Cao, W. Q.; Shi, H. L.; Lu, M. M.; Wang, G.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Reduced graphene oxides: The thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale2014, 6, 5754–5761.

    CAS  Google Scholar 

  42. Cançado, L. G.; Jorio, A.; Ferreira, E. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. D. O.; Lombardo, A.; Kulmala, T.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett.2011, 11, 3190–3196.

    Google Scholar 

  43. Ammar, M. R.; Galy, N.; Rouzaud, J. N.; Toulhoat, N.; Vaudey, C. E.; Simon, P.; Moncoffre, N. Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing. Carbon2015, 95, 364–373.

    CAS  Google Scholar 

  44. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol.2013, 8, 235–246.

    CAS  Google Scholar 

  45. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’Homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett.2008, 8, 36–41.

    CAS  Google Scholar 

  46. Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett.2012, 72, 3925–3930.

    Google Scholar 

  47. Centi, G.; Barbera, K.; Perathoner, S.; Gupta, N. K.; Ember, E. E.; Lercher, J. A. Onion-like graphene carbon nanospheres as stable catalysts for carbon monoxide and methane chlorination. ChemCatChem2015, 7, 3036–3046.

    CAS  Google Scholar 

  48. Kennedy, T.; Wilsey, N. D. Identification of the isolated ga vacancy in electron-irradiated GaP through EPR. Phys. Rev. Lett.1978, 41, 977–980.

    CAS  Google Scholar 

  49. Castner, T. G.; Känzig, W. The electronic structure of V-centers. J. Phys. Chem. Solids1957, 3, 178–195.

    CAS  Google Scholar 

  50. Wei, H. J.; Yin, X. W.; Li, X.; Li, M. H.; Dang, X. L.; Zhang, L. T.; Cheng, L. F. Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. Carbon2019, 147, 276–283.

    CAS  Google Scholar 

  51. Hahn, B.; Weissmann, R.; Greil, P. Electron paramagnetic resonance investigation of carbon distribution in sioc glasses. J. Mater. Sci. Lett.1996, 15, 1243–1244.

    CAS  Google Scholar 

  52. Xu, H. L.; Yin, X. W.; Zhu, M.; Han, M. K.; Hou, Z. X.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces2017, 9, 6332–6341.

    CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 61331001, 61627827, 61805085 and 91539127), the Science and Technology Planning Project of Guangdong Province, China (Nos. 2015B020233016, 2014B020215003, 2014A020215031, 2014B050504009 and 2018A030310519), the Guangzhou Science and technology plan project (No. 201904010321), the Distinguished Young Teacher Project in Higher Education of Guangdong, China (No. YQ2015049), the Science and Technology Program of Guangzhou (No. 2019050001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujiao Shi or Da Xing.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, W., Shi, Y. & Xing, D. Vacancy-defect-dipole amplifies the thermoacoustic conversion efficiency of carbon nanoprobes. Nano Res. 13, 2413–2419 (2020). https://doi.org/10.1007/s12274-020-2867-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2867-9

Keywords

Navigation