Skip to main content

Carbon Nanomaterials in the Field of Theranostics

  • Chapter
  • First Online:
Integrated Nanomaterials and their Applications
  • 199 Accesses

Abstract

Numerous unique nanomaterials have been discovered as a result of the rising demand for nanotechnology that will be used in the biomedical and pharmaceutical sciences. Drug delivery systems made of nanomaterials have enormous potential for implementing nanotechnology in medical settings. Graphene, reduced graphene oxides, carbon dots, and fullerenes are just a few examples of the many carbon-based compounds that have attracted a lot of attention in recent years. Because of their excellent mechanical, electrical, thermal, optical, and chemical properties as well as their unique structural dimensions, these materials have attracted a lot of attention in a number of sectors, including biological applications. Recent research has focused on imaging of cells and tissues as well as the delivery of therapeutic molecules for the treatment of disease and tissue restoration. A promising imaging agent for tumor diagnosis, carbon-based nanomaterials have a broad-range one-photon property, are biocompatible, and are simple to functionalize. Deep-tissue optical imaging is made possible by the intrinsic two-photon fluorescence property of carbon-based nanomaterials in the long wavelength range (near-infrared II). This chapter explains the potential and promising diagnostic and therapeutic applications of carbon-based nanomaterials for the treatment of many diseases, including cancer, and highlights current developments in one-photon and two-photon imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suhag D, Chauhan M, Shakeel A, Das S (2020) Emerging trends in nanotheranostics. NanoBioMedicine:335–368

    Google Scholar 

  2. Suhag D, Shahdeo D, Gandhi S (2019) Emerging trends and advances in targeted nanotheranostics. SMC Bulletin 10:17–22

    Google Scholar 

  3. Thakur P, Thakur A (2022) Nanomaterials, their types and properties. In: Thakur A, Thakur P, Khurana SP (eds) Synthesis and applications of nanoparticles. Springer, Singapore, pp 19–44. https://doi.org/10.1007/978-981-16-6819-7_2

    Chapter  Google Scholar 

  4. Pinto AM, Gonçalves IC, Pestana M (2013) Graphene-based materials biocompatibility: a review. Colloids Surf B: Biointerfaces 111:188–202

    Article  CAS  PubMed  Google Scholar 

  5. Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41(9):3679

    Article  CAS  PubMed  Google Scholar 

  6. Thakur P, Sharma P, Mattei JL et al (2018) Influence of cobalt substitution on structural, optical, electrical and magnetic properties of nanosized lithium ferrite. J Mater Sci Mater Electron 29:16507–16515

    Article  CAS  Google Scholar 

  7. Pathania A, Rana K, Bhalla N et al (2017) Raman and Mössbauer spectroscopic studies of tungsten doped Ni–Zn nano ferrite. J Mater Sci Mater Electron 28:679–685

    Article  CAS  Google Scholar 

  8. Dhanda N, Thakur P, Sun ACA, Thakur A (2023) Structural, optical and magnetic properties along with antifungal activity of Ag-doped Ni-Co nanoferrites synthesized by eco-friendly route. J Magn Magn Mater 572

    Google Scholar 

  9. Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930

    Article  CAS  Google Scholar 

  10. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Science 287:1801–1804

    Article  CAS  PubMed  Google Scholar 

  11. Patel KD, Singh R, Kim H (2019) Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horiz 6(3):434–469

    Article  CAS  Google Scholar 

  12. Margadonna S, Prassides K (2001) Fullerenes. In Elsevier eBooks (pp. 3379–3383)

    Google Scholar 

  13. Delgado JL, Filippone S, Giacalone F, Herranz M, Illescas BM, Pérez EM, Martín N (2013) Buckyballs. In: Topics in current chemistry. Springer, pp 1–64

    Google Scholar 

  14. Accorsi G, Armaroli N (2010) Taking advantage of the electronic excited states of [60]-fullerenes. J Phys Chem C 114(3):1385–1403

    Article  CAS  Google Scholar 

  15. Birkett PR (2001) Fullerene chemistry. In Elsevier eBooks (pp. 3367–3371)

    Google Scholar 

  16. Benn TM, Westerhoff P, Herckes P (2011) Detection of fullerenes (C60 and C70) in commercial cosmetics. Environ Pollut 159(5):1334–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thakur A, Verma R, Wan F, Ravelo B, Edelman I, Ovchinnikov S, Thakur P (2023) Investigation of structural, elastic and magnetic properties of Cu2+ ions substituted cobalt nanoferrites. J Magn Magn Mater 581:170980

    Article  CAS  Google Scholar 

  18. Singh A, Wan F, Yadav K, Salvi A, Thakur P, Thakur A (2023) Synergistic effect of ZnO nanoparticles with Cu2+ doping on antibacterial and photocatalytic activity. Inorg Chem Comm 157:11425

    Article  Google Scholar 

  19. Mahor A, Singh PP, Bharadwaj P, Sharma N, Yadav S, Rosenholm JM, Bansal KK (2021) Carbon-based nanomaterials for delivery of biologicals and therapeutics: a cutting-edge technology. C, 7(1), Article 19. http://creativecommons.org/licenses/by/4.0/

  20. Pavelyev V, Tripathi N (2022) Optical characterization of nanomaterials-II. In: Thakur A, Thakur P, Khurana SP (eds) Synthesis and applications of nanoparticles. Springer, Singapore, pp 151–176

    Chapter  Google Scholar 

  21. Avouris P, Hertel T, Martel R, Schmidt TOB, Shea H, Walkup RE (1999) Carbon nanotubes: nanomechanics, manipulation, and electronic devices. Appl Surf Sci 141(3–4):201–209

    Article  CAS  Google Scholar 

  22. Meng L, Fu C, Lu Q (2009) Advanced technology for functionalization of carbon nanotubes. Prog Nat Sci Mater Int 19(7):801–810

    Article  CAS  Google Scholar 

  23. Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology☆. Adv Drug Deliv Rev 58(14):1460–1470

    Article  CAS  PubMed  Google Scholar 

  24. Kala D, Sharma TK, Gupta S, Verma V, Thakur A, Kaushal A, Trukhanov AV, Trukhanov SV (2021) Graphene oxide nanoparticles modified paper electrode as a biosensing platform for detection of the htrA gene of O. tsutsugamushi. Sensors 21:4366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsai P, Kuo H, Chiu W, Wu J (2013) Purification and functionalization of single-walled carbon nanotubes through different treatment procedures. J Nanomater 2013:1–9

    Google Scholar 

  26. Cataldo F, Da Ros T (2008) Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. In Carbon materials. Springer Nature (Netherlands)

    Google Scholar 

  27. Heller DA, Baik S, Eurell TE, Strano MS (2005) Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 17(23):2793–2799

    Article  CAS  Google Scholar 

  28. Lacerda L, Russier J, Pastorin G, Vázquez E, Venturelli E, Dumortier H, Lehto V, Prato M, Kostarelos K, Bianco A (2012) Translocation mechanisms of chemically functionalized carbon nanotubes across plasma membranes. Biomaterials 33(11):3334–3343

    Article  CAS  PubMed  Google Scholar 

  29. Almessiere MA, Slimani Y, Thurkanov AV, Baykal A (2022) Structural and morphological characterization of nanomaterials. In: Thakur A, Thakur P, Khurana SP (eds) Synthesis and applications of nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-16-6819-7_6

    Chapter  Google Scholar 

  30. Dresselhaus MS, Dresselhaus G (1981) Intercalation compounds of graphite. Adv Phys 51(1):1–186

    Article  Google Scholar 

  31. Sangam S, Garg P, Sanyal T, Pahari S, Khurana SMP, Mukherjee M (2022) Graphene quantum dots and their hybrid hydrogels: a multifaceted platform for theranostic applications. In: Thakur A, Thakur P, Khurana SP (eds) Synthesis and applications of nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-16-6819-7_20

    Chapter  Google Scholar 

  32. Mochalin V, Pentecost A, Li X, Neitzel I, Nelson MN, Wei C, Chen Y, Guo F, Gogotsi Y (2013) Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Mol Pharm 10(10):3728–3735

    Article  CAS  PubMed  Google Scholar 

  33. Xu B, Mu Y, Mao Z, Xie Z, Wu H, Zhang Y, Jin C, Chi Z, Liu S, Xu J, Wu Y, Lu P, Lien A, Bryce MR (2016) Achieving remarkable mechanochromism and white-light emission with thermally activated delayed fluorescence through the molecular heredity principle. Chem Sci 7(3):2201–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M (2018) Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostruct Chem 8(2):123–137

    Article  CAS  Google Scholar 

  35. Hom C, Lu J, Liong M, Luo H, Li Z, Zink JI, Tamanoi F (2010) Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown Signaling pathways in mammalian cells. Small 6(11):1185–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Banerjee AN (2018) Graphene and its derivatives as biomedical materials: future prospects and challenges. Interface Focus 8(3):20170056

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sun Y, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang HG, Köse ME, Chen B, Veca LM, Xie S (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  CAS  PubMed  Google Scholar 

  38. Randel JC, Niestemski F, Botello-Méndez AR, Mar W, Ndabashimiye G, Melinte S, Dahl JJ, Carlson RH, Butova ED, Fokin AA, Schreiner PR, Charlier J, Manoharan HC (2014) Unconventional molecule-resolved current rectification in diamondoid–fullerene hybrids. Nat Commun 5:1

    Article  Google Scholar 

  39. Bitounis D, Ali-Boucetta H, Hong BH, Min D, Kostarelos K (2013) Prospects and challenges of graphene in biomedical applications. Adv Mater 25(16):2258–2268

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Zhang S, Xu T, Zhang T, Yuru M, Liu J, Yan L, Xing F (2018) Ultra-sensitive and ultra-fast detection of whole unlabeled living cancer cell responses to paclitaxel with a graphene-based biosensor. Sens Actuators B Chem 263:417–425

    Article  CAS  Google Scholar 

  41. Shen Y, Shuhendler AJ, Ye D, Xu J, Chen H (2016) Two-photon excitation nanoparticles for photodynamic therapy. Chem Soc Rev 45(24):6725–6741

    Article  CAS  PubMed  Google Scholar 

  42. Bhalla N, Taneja S, Thakur P, Sharma PK, Mariotti D, Maddi C, Ivanova O, Petrov D, Sukhachev A, Edelman IS, Thakur A (2021) Doping independent work function and stable band gap of spinel ferrites with Tunable plasmonic and magnetic properties. Nano Lett 21(22):9780–9788

    Article  CAS  PubMed  Google Scholar 

  43. Davies C, Godwin JD, Gray R, Clarke M, Cutter DJ, Darby SC, McGale P, Pan H, Taylor CB, Wang Y, Dowsett M, Ingle JN, Peto R (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomized trials. Lancet 378(9793):771–784

    Article  CAS  PubMed  Google Scholar 

  44. Clarke M, Collins RW, Darby SC, Davies C, Elphinstone P, Evans V, Godwin JD, Gray R, Hicks C, James SJ, Mackinnon E, McGale P, McHugh TD, Peto R, Taylor CB, Wang Y (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomized trials. Lancet 366(9503):2087–2106

    Article  CAS  PubMed  Google Scholar 

  45. Son KH, Hong JH, Lee JY (2016) Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomedicine 11:5163–5185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verma R, Thakur P, Sun AC, Thakur A (2023) Investigation of structural, microstructural and electrical characteristics of hydrothermally synthesized Li0.5-0.5xCoxFe2.5-0.5xO4 ferrite nanoparticles. Phys B: Cond Mater 661:414926

    Article  CAS  Google Scholar 

  47. Meng J, Liang X, Chen X, Zhao Y (2013) Biological characterizations of [Gd@C82(OH)22]n nanoparticles as fullerene derivatives for cancer therapy. Integr Biol 5(1):43–47

    Article  CAS  Google Scholar 

  48. Liu Y, Chen C, Qian P, Lu X, Sun B, Zhang X, Wang L, Gao X, Li H, Chen Z, Tang J, Zhang W, Dong J, Bai R, Lobie PE, Wu Q, Liu S, Zhang H, Zhao F et al (2015) Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nat Commun 6:1

    CAS  Google Scholar 

  49. Faraj AA, Shaik AS, Halwani R, Alfuraih A (2016) Magnetic targeting and delivery of drug-loaded SWCNTs theranostic nanoprobes to lung metastasis in breast cancer animal model: noninvasive monitoring using magnetic resonance imaging. Mol Imaging Biol 18(3):315–324

    Article  PubMed  Google Scholar 

  50. Chen H, Ma YX, Li Z, Shi Q, Zheng W, Liu Y, Wang P (2012) Functionalization of single-walled carbon nanotubes enables efficient intracellular delivery of siRNA targeting MDM2 to inhibit breast cancer cells growth. Biomed Pharmacother 66(5):334–338

    Article  CAS  PubMed  Google Scholar 

  51. Girish C, Vijayalakshmi P, Mentham R, Rao CB, Nama S (2014) A review on breast cancer. Int J Pharm Bio Sci 4(2):47–54

    CAS  Google Scholar 

  52. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    Article  CAS  PubMed  Google Scholar 

  53. Ogbodu RO, Limson J, Prinsloo E, Nyokong T (2015) Photophysical properties and photodynamic therapy effect of zinc phthalocyanine-spermine-single walled carbon nanotube conjugate on MCF-7 breast cancer cell line. Synth Met 204:122–132

    Article  CAS  Google Scholar 

  54. Shi J, Wang L, Gao J, Liu Y, Zhang J, Ma R, Liu R, Zhang Z (2014) A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials 35(22):5771–5784

    Article  CAS  PubMed  Google Scholar 

  55. Nurunnabi, Khatun Z, Reeck GR, Lee DH, Lee Y (2014) Photoluminescent graphene nanoparticles for cancer phototherapy and imaging. ACS Appl Mater Interfaces 6(15):12413–12421

    Article  CAS  PubMed  Google Scholar 

  56. Chen Y, Wang L, Shi J (2016) Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today 11(3):292–308

    Article  CAS  Google Scholar 

  57. Moon HK, Lee SH, Choi HC (2009) In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3(11):3707–3713

    Article  CAS  PubMed  Google Scholar 

  58. Robinson JT, Welsher K, Tabakman SM et al (2010) High performance in vivo near-IR (>1 mum) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res 3(11):779–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang K, Zhang S, Zhang G et al (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10(9):3318–3323

    Article  CAS  PubMed  Google Scholar 

  60. Hwang MT, Landon PB, Lee J et al (2016) Highly specific SNP detection using 2D graphene electronics and DNA strand displacement. Proc Natl Acad Sci USA 113(26):7088–7093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fiorillo M, Verre AF, Iliut M et al (2015) Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via differentiation-based nano-therapy. Oncotarget 6(6):3553–3562

    Article  PubMed  PubMed Central  Google Scholar 

  62. Taghavi S, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M (2020) Hybrid carbon-based materials for gene delivery in cancer therapy. J Control Release 318:158–175

    Article  CAS  PubMed  Google Scholar 

  63. Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J (2021) Recent advances in stimulus-responsive nanocarriers for gene therapy. Adv Sci 8(14):2100540

    Article  CAS  Google Scholar 

  64. Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Ahmadi S, Jajarmi V, Fatahi Y, Aldhaher A, Tahriri M, Webster TJ, Mostafavi E (2021) Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery. J Nanostructure Chem 12(5):919–932

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mostafavi E, Soltantabar P, Webster TJ (2019) Nanotechnology and pico technology. In Elsevier eBooks (pp. 191–212)

    Google Scholar 

  66. Riley PR, Narayan RJ (2021) Recent advances in carbon nanomaterials for biomedical applications: a review. Curr Opin Biomed Eng 17:100262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zu H, Gao D (2021) Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J 23:4

    Article  Google Scholar 

  68. Dominguez GA, Torelli MD, Buchman JT, Haynes CL, Hamers RJ, Klaper RD (2018) Size dependent oxidative stress response of the gut of Daphnia magna to functionalized nanodiamond particles. Environ Res 167:267–275

    Article  CAS  PubMed  Google Scholar 

  69. Thakur P, Verma Y, Thakur A (2022) Toxicity of nanomaterials: an overview. In: Thakur A, Thakur P, Khurana SP (eds) Synthesis and applications of nanoparticles. Springer, Singapore, pp 535–544. https://doi.org/10.1007/978-981-16-6819-7_25

    Chapter  Google Scholar 

  70. Ema M, Gamo M, Honda K (2016) A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. Regul Toxicol Pharmacol 74:42–63

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayu Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wan, F., Thakur, A., Thakur, P. (2023). Carbon Nanomaterials in the Field of Theranostics. In: Suhag, D., Thakur, A., Thakur, P. (eds) Integrated Nanomaterials and their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-6105-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6105-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6104-7

  • Online ISBN: 978-981-99-6105-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics