Skip to main content
Log in

Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The incorporation of inorganic fillers into poly(ethyleneoxide)(PEO)-based solid polymer electrolytes (SPEs) is well known as a low-cost and effective method to improve their mechanical and electrochemical properties. Porous zeolitic imidazolate framework-8 (ZIF-8) is firstly used as the filler for PEO-based SPEs in this work. Due to the introduction of ZIF-8, an ionic conductivity of 2.2 × 10−5 S/cm (30 °C) is achieved for the composite SPE, which is one order of magnitude higher than that of the pure PEO. ZIF-8 also accounts for the broader electrochemical stability window and lithium ion transference number (0.36 at 60 °C) of the composite SPE. Moreover, the improved mechanism of ZIF-8 to the composite SPE is investigated by zeta potential and Fourier transform infrared spectrograph characterizations. The stability at the composite SPE/lithium interface is greatly enhanced. The LiFePO4||Li cells using the composite SPE exhibit high capacity and excellent cycling performance at 60 °C, i.e., 85% capacity retention with 111 mA·h/g capacity retained after 350 cycles at 0.5 C. In comparison, the cells using the pure PEO show fast capacity decay to 74 mA·h/g maintaining only 68 capacity. These results indicate that the PEO-based SPEs with ZIF-8 are of great promise for the application in solid-state lithium metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yaghi, O. M.; Li, H. L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc.1995, 117, 10401–10402.

    CAS  Google Scholar 

  2. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res.2010, 43, 58–67.

    CAS  Google Scholar 

  3. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA2006, 103, 10186–10191.

    CAS  Google Scholar 

  4. Chen, L. Y.; Luque, R.; Li, Y. W. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev.2017, 46, 4614–4630.

    CAS  Google Scholar 

  5. Qi, Z. Y.; Pei, Y. C.; Goh, T. W.; Wang, Z. Y.; Li, X. L.; Lowe, M.; Maligal-Ganesh, R. V.; Huang, W. Y. Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis. Nano Res.2018, 11, 3469–3479. www.editorialmanager.com/nare/default.asp

    CAS  Google Scholar 

  6. Liu, X.; He, L. C.; Zheng, J. Z.; Guo, J.; Bi, F.; Ma, X.; Zhao, K.; Liu, Y. L.; Song, R.; Tang, Z. Y. Solar-light-driven renewable butanol separation by core-shell Ag@ZIF-8 nanowires. Adv. Mater.2015, 27, 3273–3277.

    CAS  Google Scholar 

  7. Wang, S. H.; Fan, Y. N.; Teng, J.; Fan, Y. Z.; Jiang, J. J.; Wang, H. P.; Grützmacher, H.; Wang, D. W.; Su, C. Y. Nanoreactor based on macroporous single crystals of metal-organic framework. Small2016, 12, 5702–5709.

    CAS  Google Scholar 

  8. Lin, G.; Zhang, Y.; Zhang, L.; Wang, J. Q.; Tian, Y.; Cai, W.; Tang, S. G.; Chu, C. C.; Zhou, J. J.; Mi, P. et al. Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Res.2020, 13, 238–245.

    CAS  Google Scholar 

  9. Wang, Z. G.; Wang, D.; Zhang, S. X.; Hu, L.; Jin, J. Interfacial design of mixed matrix membranes for improved gas separation performance. Adv. Mater.2016, 28, 3399–3405.

    CAS  Google Scholar 

  10. Yang, F.; Mu, H.; Wang, C. Q.; Xiang, L.; Yao, K. X.; Liu, L. M.; Yang, Y.; Han, Y.; Li, Y. S.; Pan, Y. C. Morphological map of ZIF-8 crystals with five distinctive shapes: Feature of filler in mixed-matrix membranes on C3H6/C3H8 separation. Chem. Mater.2018, 30, 3467–3473.

    CAS  Google Scholar 

  11. Zheng, B.; Maurin, G. Mechanical control of the kinetic propylene/ propane separation by zeolitic imidazolate framework-8. Angew. Chem.2019, 131, 13872–13876.

    Google Scholar 

  12. Shen, K.; Zhang, L.; Chen, X. D.; Liu, L. M.; Zhang, D. L.; Han, Y.; Chen, J. Y.; Long, J. L.; Luque, R.; Li, Y. W. et al. Ordered macromicroporous metal-organic framework single crystals. Science2018, 359, 206–210.

    CAS  Google Scholar 

  13. Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd Nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed.2016, 55, 3685–3689.

    CAS  Google Scholar 

  14. Yang, Y. X.; Wang, Z. H.; Jiang, T. Z.; Dong, C.; Mao, Z.; Lu, C. Y.; Sun, W.; Sun, K. N. A heterogenized Ni-doped zeolitic imidazolate framework to guide efficient trapping and catalytic conversion of polysulfides for greatly improved lithium-sulfur batteries. J. Mater. Chem. A2018, 6, 13593–13598.

    CAS  Google Scholar 

  15. Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res.2018, 11, 163–173.

    CAS  Google Scholar 

  16. Zhu, H.; Yang, X.; Cranston, E. D.; Zhu, S. P. Flexible and porous nanocellulose aerogels with high loadings of metal-organicframework particles for separations applications. Adv. Mater.2016, 28, 7652–7657.

    CAS  Google Scholar 

  17. Mao, J. J.; Ge, M. Z.; Huang, J. Y.; Lai, Y. K.; Lin, C. J.; Zhang, K. Q.; Meng, K.; Tang, Y. X. Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. J. Mater. Chem. A2017, 5, 11873–11881.

    CAS  Google Scholar 

  18. Qiu, M.; He, C. J. Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer. J. Hazard. Mater.2019, 367, 339–347.

    CAS  Google Scholar 

  19. Su, Y. Q.; Xu, H. T.; Wang, J. J.; Luo, X. K.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Nanorattle Au@PtAg encapsulated in ZIF-8 for enhancing CO2 photoreduction to CO. Nano Res.2019, 12, 625–630.

    CAS  Google Scholar 

  20. Zhang, H. Y.; Li, Q.; Liu, R. L.; Zhang, X. K.; Li, Z. H.; Luan, Y. X. A versatile prodrug strategy to in situlic> encapsulate drugs in MOF nanocarriers: A case of cytarabine-IR820 prodrug encapsulated ZIF-8 toward chemo-photothermal therapy. Adv. Funct. Mater.2018, 28, 1802830.

    Google Scholar 

  21. Du, Y. J.; Gao, J.; Zhou, L. Y.; Ma, L.; He, Y.; Zheng, X. F.; Huang, Z. H.; Jiang, Y. J. MOF-based nanotubes to hollow nanospheres through protein-induced soft-templating pathways. Adv. Sci.2019, 6, 1801684.

    Google Scholar 

  22. Deng, Y. J.; Chi, B.; Li, J.; Wang, G. H.; Zheng, L.; Shi, X. D.; Cui, Z. M.; Du, L.; Liao, S. J.; Zang, K. T. et al. Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward PEM fuel cells. Adv. Energy Mater.2019, 9, 1802856.

    Google Scholar 

  23. Zhao, L. Y.; Yu, J.; Xing, C. T.; Ullah, Z.; Yu, C. C.; Zhu, S. P.; Chen, M. L.; Li, W. W.; Li, Q.; Liu, L. W. Nanopore confined anthraquinone in MOF-derived N-doped microporous carbon as stable organic cathode for lithium-ion battery. Energy Storage Mater.2019, 22, 433–440.

    Google Scholar 

  24. Xiao, F.; Xu, G. L.; Sun, C. J.; Xu, M. J.; Wen, W.; Wang, Q.; Gu, M.; Zhu, S. Q.; Li, Y. Y.; Wei, Z. D. et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy2019, 61, 60–68.

    CAS  Google Scholar 

  25. Jayaramulu, K.; Datta, K. K. R.; Rösler, C.; Petr, M.; Otyepka, M.; Zboril, R.; Fischer, R. A. Biomimetic superhydrophobic/ superoleophilic highly fluorinated graphene oxide and ZIF-8 composites for oil-water separation. Angew. Chem., Int. Ed.2016, 55, 1178–1182.

    CAS  Google Scholar 

  26. Kim, D.; Kim, D. W.; Buyukcakir, O.; Kim, M. K.; Polychronopoulou, K.; Coskun, A. Highly hydrophobic ZIF-8/carbon nitride foam with hierarchical porosity for oil capture and chemical fixation of CO2. Adv. Funct. Mater.2017, 27, 1700706.

    Google Scholar 

  27. Lei, Z. W.; Deng, Y. H.; Wang, C. Y. Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction. J. Mater. Chem. A2018, 6, 3258–3263.

    CAS  Google Scholar 

  28. Sun, C.; Zhang, J. H.; Yuan, X. F.; Duan, J. N.; Deng, S. W.; Fan, J. M.; Chang, J. K.; Zheng, M. S.; Dong, Q. F. ZIF-8-based quasi- solidstate electrolyte for lithium batteries. ACS Appl. Mater. Interfaces2019, 11, 46671–46677.

    CAS  Google Scholar 

  29. Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J. P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater.2013, 12, 452–457.

    CAS  Google Scholar 

  30. Lin, D. C.; Yuen, P. Y.; Liu, Y. Y.; Liu, W.; Liu, N.; Dauskardt, R. H.; Cui, Y. A Silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv. Mater.2018, 30, 1802661.

    Google Scholar 

  31. Bae, J.; Li, Y. T.; Zhang, J.; Zhou, X. Y.; Zhao, F.; Shi, Y.; Goodenough, J. B.; Yu, G. H. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem., Int. Ed.2018, 57, 2096–2100.

    CAS  Google Scholar 

  32. Zhou, W. D.; Zhu, Y.; Grundish, N.; Xin, S.; Wang, S. F.; You, Y.; Wu, N.; Gao, J.; Cui, Z. M.; Li, Y. T. et al. Polymer lithium-garnet interphase for an all-solid-state rechargeable battery. Nano Energy2018, 53, 926–931.

    CAS  Google Scholar 

  33. Wan, Z. P.; Lei, D. N.; Yang, W.; Liu, C.; Shi, K.; Hao, X. G.; Shen, L.; Lv, W.; Li, B. H.; Yang, Q. H. et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Adv. Funct. Mater.2019, 29, 1805301.

    Google Scholar 

  34. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature1998, 394, 456–458.

    CAS  Google Scholar 

  35. Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy2018, 46, 176–184.

    CAS  Google Scholar 

  36. Li, W. W.; Zhang, S. P.; Wang, B. R.; Gu, S.; Xu, D.; Wang, J. N.; Chen, C. H.; Wen, Z. Y. Nanoporous adsorption effect on alteration of the Li+ diffusion pathway by a highly ordered porous electrolyte additive for high-rate all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces2018, 10, 23874–23882.

    CAS  Google Scholar 

  37. Yuan, C. F.; Li, J.; Han, P. F.; Lai, Y. Q.; Zhang, Z. A.; Liu, J. Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework. J. Power Sources2013, 240, 653–658.

    CAS  Google Scholar 

  38. Gerbaldi, C.; Nair, J. R.; Kulandainathan, M. A.; Kumar, R. S.; Ferrara, C.; Mustarelli, P.; Stephan, A. M. Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A2014, 2, 9948–9954.

    CAS  Google Scholar 

  39. Wiers, B. M.; Foo, M. L.; Balsara, N. P.; Long, J. R. A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. J. Am. Chem. Soc.2011, 133, 14522–14525.

    CAS  Google Scholar 

  40. Shen, L.; Wu, H. B.; Liu, F.; Brosmer, J. L.; Shen, G. R.; Wang, X. F.; Zink, J. I.; Xiao, Q. F.; Cai, M.; Wang, G. et al. Creating iithium-ion electrolytes with biomimetic ionic channels in metal-organic frameworks. Adv. Mater.2018, 30, 1707476.

    Google Scholar 

  41. Huang, S. B.; Yang, H.; Hu, J. K.; Liu, Y. C.; Wang, K. X.; Peng, H. L.; Zhang, H.; Fan, L. Z. Early lithium plating behavior in confined nanospace of 3D lithiophilic carbon matrix for stable solid-state lithium metal batteries. Small2019, 15, 1904216.

    CAS  Google Scholar 

  42. Li, W. W.; Sun, C. Z.; Jin, J.; Li, Y. P.; Chen, C. H.; Wen, Z. Y. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A2019, 7, 27304–27312.

    CAS  Google Scholar 

  43. Chen, L.; Li, W. X.; Fan, L. Z.; Nan, C. W.; Zhang, Q. Intercalated electrolyte with high transference number for dendrite-free solidstate lithium batteries. Adv. Funct. Mater.2019, 29, 1901047.

    Google Scholar 

  44. Wu, J. F.; Guo, X. MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. J. Mater. Chem. A2019, 7, 2653–2659.

    CAS  Google Scholar 

  45. Zhang, B. C.; Chen, L.; Hu, J. K.; Liu, Y. C.; Liu, Y. F.; Feng, Q.; Zhu, G. N.; Fan, L. Z. Solid-state lithium metal batteries enabled with high loading composite cathode materials and ceramic-based composite electrolytes. J. Power Sources2019, 442, 227230.

    CAS  Google Scholar 

  46. Du, Y.; Gao, X.; Li, S. W.; Wang, L.; Wang, B. Recent advances in metal-organic frameworks for lithium metal anode protection. Chin. Chem. Lett.2020, 31, 609–616.

    CAS  Google Scholar 

  47. Hu, J. K.; He, P. G.; Zhang, B. C.; Wang, B. Y.; Fan, L. Z. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater.2020, 26, 283–289.

    Google Scholar 

  48. Zhu, K.; Liu, Y. X.; Liu, J. A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte. RSC Adv.2014, 4, 42278–42284.

    CAS  Google Scholar 

  49. Zhang, C.; Lin, Y.; Liu, J. Sulfur double locked by a macrostructural cathode and a solid polymer electrolyte for lithium-sulfur batteries. J. Mater. Chem. A2015, 3, 10760–10766.

    CAS  Google Scholar 

  50. Zhang, C.; Lin, Y.; Zhu, Y. W.; Zhang, Z.; Liu, J. Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithiumsulfur batteries. RSC Adv.2017, 7, 19231–19236.

    CAS  Google Scholar 

  51. Xu, H. L.; Xie, J. B.; Liu, Z. B.; Wang, J.; Deng, Y. H. Carbonylcoordinating polymers for high-voltage solid-state lithium batteries: Solid polymer electrolytes. MRS Energy Sustain.2020, 7, E2.

    Google Scholar 

  52. Bruce, P. G.; Evans, J.; Vincent, C. A. Conductivity and transference number measurements on polymer electrolytes. Solid State Ionics1988, 28-30, 918–922.

    Google Scholar 

  53. Zheng, Y. W.; Pan, Q. W.; Clites, M.; Byles, B. W.; Pomerantseva, E.; Li, C. Y. High-capacity all-solid-state sodium metal battery with hybrid polymer electrolytes. Adv. Energy Mater.2018, 8, 1801885.

    Google Scholar 

  54. Deng, K. R.; Qin, J. X.; Wang, S. J.; Ren, S.; Han, D. M.; Xiao, M.; Meng, Y. Z. Effective suppression of lithium dendrite growth using a flexible single-ion conducting polymer electrolyte. Small2018, 14, 1801420.

    Google Scholar 

  55. Wei, Z. Y.; Chen, S. J.; Wang, J. Y.; Wang, Z. H.; Zhang, Z. H.; Yao, X. Y.; Deng, Y. H.; Xu, X. X. Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. J. Mater. Chem. A2018, 6, 13438–13447.

    CAS  Google Scholar 

  56. Li, Y. H.; Sun, Z. J.; Shi, L.; Lu, S. Y.; Sun, Z. H.; Shi, Y. C.; Wu, H.; Zhang, Y. F.; Ding, S. J. Poly(ionic liquid)-polyethylene oxide semi-interpenetrating polymer network solid electrolyte for safe lithium metal batteries. Chem. Eng. J.2019, 375, 121925.

    CAS  Google Scholar 

  57. Chen, N.; Li, Y. J.; Dai, Y. J.; Qu, W. J.; Xing, Y.; Ye, Y. S.; Wen, Z. W.; Guo, C.; Wu, F.; Chen, R. J. A Li+ conductive metal organic framework electrolyte boosts the high-temperature performance of dendrite-free lithium batteries. J. Mater. Chem. A2019, 7, 9530–9536.

    CAS  Google Scholar 

  58. Zhou, D.; Tkacheva, A.; Tang, X.; Sun, B.; Shanmukaraj, D.; Li, P.; Zhang, F.; Armand, M.; Wang, G. X. Stable conversion chemistrybased lithium metal batteries enabled by hierarchical multifunctional polymer electrolytes with near-single ion conduction. Angew. Chem., Int. Ed.2019, 58, 6001–6006.

    CAS  Google Scholar 

  59. Lin, Y.; Wang, X. M.; Liu, J.; Miller, J. D. Natural halloysite nanoclay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy2017, 31, 478–485.

    CAS  Google Scholar 

  60. Chen, N.; Xing, Y.; Wang, L. L.; Liu, F.; Li, L.; Chen, R. J.; Wu, F.; Guo, S. J. “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery. Nano Energy2018, 47, 35–42.

    Google Scholar 

  61. Yoshida, Y.; Kitagawa, H. Ionic conduction in metal-organic frameworks with incorporated ionic liquids. ACS Sustainable Chem. Eng.2019, 7, 70–81.

    CAS  Google Scholar 

  62. Xu, W. T.; Pei, X. K.; Diercks, C. S.; Lyu, H.; Ji, Z.; Yaghi, O. M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte. J. Am. Chem. Soc.2019, 141, 17522–17526.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key-Area Research and Development Program of Guangdong Province (Nos. 2020B090919001 and 2019B090908001), the Natural Science Foundation of Guangdong Province (No. 2019A1515010595), China Postdoctoral Science Foundation (No. 2018M640778), International Cooperative Research Program of Shenzhen (No. GJHZ20180411143536149), Shenzhen Key Laboratory of Solid State Batteries (No. ZDSYS201802081843465), and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power (No. 2018B030322001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wang, Yonghong Deng or Chaoyang Wang.

Electronic Supplementary Material

12274_2020_2845_MOESM1_ESM.pdf

Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Z., Shen, J., Zhang, W. et al. Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes. Nano Res. 13, 2259–2267 (2020). https://doi.org/10.1007/s12274-020-2845-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2845-2

Keywords

Navigation