Skip to main content
Log in

Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Multiplexed intracellular detection is desirable in biomedical sciences for its higher efficiency and accuracy compared to the single-analyte detection. However, it is very challenging to construct nanoprobes that possess multiple fluorescent signals to recognize the different intracellular species synchronously. Herein, we proposed a novel dual-excitation/dual-emission upconversion strategy for multiplexed detection through the design of upconversion nanoparticles (UCNP) loaded with two dyes for sensitization and quenching of the upconversion luminescence (UCL), respectively. Based on the two independent energy transfer processes of near-infrared (NIR) dye IR845 to UCNP and UCNP to visible dye PAPS-Zn, ClO and Zn2+ were simultaneously detected with a limit of detection (LOD) of 41.4 and 10.5 nM, respectively. By utilizing a purpose-built 830/980 nm dual-laser confocal microscope, both intrinsic and exogenous ClO and Zn2+ in live MCF-7 cells have been accurately quantified. Such dual-excitation/dual-emission ratiometric UCL detection mode enables not only monitoring multiple intracellular analytes but also eliminating the detection deviation caused by inhomogeneous probe distribution in cells. Through modulation of NIR dye and visible dye with other reactive groups, the nanoprobes can be extended to analyze various intracellular species, which provides a promising tool to study the biological activities in live cells and diagnose diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolanowski, J. L.; Liu, F.; New, E. J. Fluorescent probes for the simultaneous detection of multiple analytes in biology. Chem. Soc. Rev.2018, 47, 195–208.

    Article  CAS  Google Scholar 

  2. Fan, Y.; Wang, S. F.; Zhang, F. Optical multiplexed bioassays for improved biomedical diagnostics. Angew. Chem., Int. Ed.2019, 58, 13208–13219.

    Article  CAS  Google Scholar 

  3. Leng, Y.; Sun, K.; Chen, X. Y.; Li, W. W. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chem. Soc. Rev.2015, 44, 5552–5595.

    Article  CAS  Google Scholar 

  4. Jia, P. P.; Jiang, S. T.; Xu, L. Small-molecule bifunctional fluorescent probes for the differential detection of multiple guests. Curr. Org. Synth.2019, 16, 485–497.

    Article  CAS  Google Scholar 

  5. Zhou, W. J.; Liang, W. B.; Li, D. X.; Yuan, R.; Xiang, Y. Dual-color encoded DNAzyme nanostructures for multiplexed detection of intracellular metal ions in living cells. Biosens. Bioelectron.2016, 85, 573–579.

    Article  CAS  Google Scholar 

  6. Mimitou, E. P.; Cheng, A.; Montalbano, A.; Hao, S.; Stoeckius, M.; Legut, M.; Roush, T.; Herrera, A.; Papalexi, E.; Ouyang, Z. Q. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods2019, 16, 409–412.

    Article  CAS  Google Scholar 

  7. Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed.2011, 50, 5808–5829.

    Article  CAS  Google Scholar 

  8. Gu, Z. J.; Yan, L.; Tian, G.; Li, S. J.; Chai, Z. F.; Zhao, Y. L. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater.2013, 25, 3758–3779.

    Article  CAS  Google Scholar 

  9. Zhao, L. Z.; Peng, J. J.; Huang, Q.; Li, C. Y.; Chen, M.; Sun, Y.; Lin, Q. N.; Zhu, L. Y.; Li, F. Y. Near-infrared photoregulated drug release in living tumor tissue via yolk-shell upconversion nanocages. Adv. Funct. Mater.2014, 24, 363–371.

    Article  CAS  Google Scholar 

  10. Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev.2015, 44, 1379–1415.

    Article  CAS  Google Scholar 

  11. Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev.2015, 44, 1346–1378.

    Article  CAS  Google Scholar 

  12. Yu, S. H.; Tu, D. T.; Lian, W.; Xu, J.; Chen, X. Y. Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications. Sci. China Mater.2019, 62, 1071–1086.

    Article  CAS  Google Scholar 

  13. Xu, J. T.; Yang, P. P.; Sun, M. D.; Bi, H. T.; Liu, B.; Yang, D.; Gai, S. L.; He, F.; Lin, J. Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano2017, 11, 4133–4144.

    Article  CAS  Google Scholar 

  14. Liu, J.; Bu, W. B.; Pan, L. M.; Shi, J. L. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem., Int. Ed.2013, 52, 4375–4379.

    Article  CAS  Google Scholar 

  15. Gu, B.; Zhang, Q. C. Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems. Adv. Sci.2018, 5, 1700609.

    Article  Google Scholar 

  16. Li, Z. H.; Yuan, H.; Yuan, W.; Su, Q. Q.; Li, F. Y. Upconversion nanoprobes for biodetections. Coord. Chem. Rev.2018, 354, 155–168.

    Article  CAS  Google Scholar 

  17. Peng, J. J.; Xu, W.; Teoh, C. L.; Han, S. Y.; Kim, B.; Samanta, A.; Er, J. C.; Wang, L.; Yuan, L.; Liu, X. G. et al. High-efficiency in vitro and in vivo detection of Zn2+ by dye-assembled upconversion nanoparticles. J. Am. Chem. Soc.2015, 137, 2336–2342.

    Article  CAS  Google Scholar 

  18. Zhou, Y.; Chen, W. Q.; Zhu, J. X.; Pei, W. B.; Wang, C. Y.; Huang, L.; Yao, C.; Yan, Q. Y.; Huang, W.; Loo, J. S. C. et al. Inorganic-organic hybrid nanoprobe for NIR-excited imaging of hydrogen sulfide in cell cultures and inflammation in a mouse model. Small2014, 10, 4874–4885.

    Article  CAS  Google Scholar 

  19. Hu, J. S.; Wang, R. N.; Fan, R. R.; Huang, Z. H.; Liu, Y. X.; Guo, G.; Fu, H. Enhanced luminescence in Yb3+ doped core-shell upconversion nanoparticles for sensitive doxorubicin detection. J. Lumin.2020, 217, 116812.

    Article  CAS  Google Scholar 

  20. Mou, X. M.; Wang, J. X.; Meng, X. F.; Liu, J. L.; Shi, L. Y.; Sun, L. N. Multifunctional nanoprobe based on upconversion nanoparticles for luminescent sensing and magnetic resonance imaging. J. Lumin.2017, 190, 16–22.

    Article  CAS  Google Scholar 

  21. Ai, X. Z.; Wang, Z. M.; Cheong, H.; Wang, Y.; Zhang, R. C.; Lin, J.; Zheng, Y. J.; Gao, M. Y.; Xing, B. G. Multispectral optoacoustic imaging of dynamic redox correlation and pathophysiological progression utilizing upconversion nanoprobes. Nat. Commun.2019, 10, 1087.

    Article  Google Scholar 

  22. Zheng, J. D.; Wu, Y. X.; Xing, D.; Zhang, T. Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe. Nano Res.2019, 12, 931–938.

    Article  CAS  Google Scholar 

  23. Ke, J. X.; Lu, S.; Shang, X. Y.; Liu, Y.; Guo, H. H.; You, W. W.; Li, X. J.; Xu, J.; Li, R. F.; Chen, Z. et al. A strategy of NIR dual-excitation upconversion for ratiometric intracellular detection. Adv. Sci.2019, 6, 1901874.

    Article  CAS  Google Scholar 

  24. Zhou, Y.; Pei, W. B.; Wang, C. Y.; Zhu, J. X.; Wu, J. S.; Yan, Q. Y.; Huang, L.; Huang, W.; Yao, C.; Loo, J. S. C. et al. Rhodaminemodified upconversion nanophosphors for ratiometric detection of hypochlorous acid in aqueous solution and living cells. Small2014, 10, 3560–3567.

    Article  CAS  Google Scholar 

  25. Chang, C. J.; Jaworski, J.; Nolan, E. M.; Sheng, M.; Lippard, S. J. A tautomeric zinc sensor for ratiometric fluorescence imaging: Application to nitric oxide-induced release of intracellular zinc. Proc. Natl. Acad. Sci. USA2004, 101, 1129–1134.

    Article  CAS  Google Scholar 

  26. Matsui, H.; Oyama, T. M.; Okano, Y.; Hashimoto, E.; Kawanai, T.; Oyama, Y. Low micromolar zinc exerts cytotoxic action under H2O2-induced oxidative stress: Excessive increase in intracellular Zn2+ concentration. Toxicology2010, 276, 27–32.

    Article  CAS  Google Scholar 

  27. Hu, P.; Wang, R.; Zhou, L.; Chen, L.; Wu, Q. S.; Han, M. Y.; El-Toni, A. M.; Zhao, D. Y.; Zhang, F. Near-infrared-activated upconversion nanoprobes for sensitive endogenous Zn2+ detection and selective on-demand photodynamic therapy. Anal. Chem.2017, 89, 3492–3500.

    Article  CAS  Google Scholar 

  28. You, W. W.; Tu, D. T.; Zheng, W.; Shang, X. Y.; Song, X. R.; Zhou, S. Y.; Liu, Y.; Li, R. F.; Chen, X. Y. Large-scale synthesis of uniform lanthanide-doped NaREF4 upconversion/downshifting nanoprobes for bioapplications. Nanoscale2018, 10, 11477–11484.

    Article  CAS  Google Scholar 

  29. Wu, X.; Lee, H.; Bilsel, O.; Zhang, Y. W.; Li, Z. J.; Chen, T.; Liu, Y.; Duan, C. Y.; Shen, J.; Punjabi, A. et al. Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging. Nanoscale2015, 7, 18424–18428.

    Article  CAS  Google Scholar 

  30. Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett.2011, 11, 835–840.

    Article  CAS  Google Scholar 

  31. Li, H. H.; Guan, L. M.; Zhang, X. J.; Yu, H.; Huang, D. J.; Sun, M. T.; Wang, S. H. A cyanine-based near-infrared fluorescent probe for highly sensitive and selective detection of hypochlorous acid and bioimaging. Talanta2016, 161, 592–598.

    Article  CAS  Google Scholar 

  32. Wang, J. Y.; Niu, Y. M.; Zhang, C.; Chen, Y. Q. A micro-plate colorimetric assay for rapid determination of trace zinc in animal feed, pet food and drinking water by ion masking and statistical partitioning correction. Food Chem.2018, 245, 337–345.

    Article  CAS  Google Scholar 

  33. Chen, G. Y.; Damasco, J.; Qiu, H. L.; Shao, W.; Ohulchanskyy, T. Y.; Valiev, R. R.; Wu, X.; Han, G.; Wang, Y.; Yang, C. H. et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett.2015, 15, 7400–7407.

    Article  CAS  Google Scholar 

  34. Wu, X.; Zhang, Y. W.; Takle, K.; Bilsel, O.; Li, Z. J.; Lee, H.; Zhang, Z. J.; Li, D. S.; Fan, W.; Duan, C. Y. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano2016, 10, 1060–1066.

    Article  CAS  Google Scholar 

  35. Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev.2015, 115, 10725–10815.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Cooperation Fund between Chinese and Australian Governments (No. 2017YFE0132300), the Strategic Priority Research Program of the CAS (No. XDB20000000), the National Natural Science Foundation of China (No. 51672272, 21771185, 21771178, and 21975257), Youth Innovation Promotion Association of CAS (No. 2017347), and the CAS/SAFEA International Partnership Program for Creative Research Teams.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Lu or Xueyuan Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, J., Lu, S., Li, Z. et al. Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes. Nano Res. 13, 1955–1961 (2020). https://doi.org/10.1007/s12274-020-2837-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2837-2

Keywords

Navigation