Skip to main content
Log in

3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sodium metal batteries are arousing extensive interest owing to their high energy density, low cost and wide resource. However, the practical development of sodium metal batteries is inherently plagued by the severe volume expansion and the dendrite growth of sodium metal anode during long cycles under high current density. Herein, a simple electrospinning method is applied to construct the uniformly nitrogen-doped porous carbon fiber skeleton and used as three-dimensional (3D) current collector for sodium metal anode, which has high specific surface area (1,098 m2/g) and strong binding to sodium metal. As a result, nitrogen-doped carbon fiber current collector shows a low sodium deposition overpotential and a highly stable cyclability for 3,500 h with a high coulombic effciency of 99.9% at 2 mA/cm2 and 2 mAh/cm2. Moreover, the full cells using carbon coated sodium vanadium phosphate as cathode and sodium pre-plated nitrogen-doped carbon fiber skeleton as hybrid anode can stably cycle for 300 times. These results illustrate an effective strategy to construct a 3D uniformly nitrogen-doped carbon skeleton based sodium metal hybrid anode without the formation of dendrites, which provide a prospect for further development and research of high performance sodium metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, Y. S.; Lu, Y. X. 2019 nobel prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries. ACS Energy Lett.2019, 4, 2689–2690.

    CAS  Google Scholar 

  2. Pan, J.; Chen, S. L.; Zhang, D. P.; Xu, X. N.; Sun, Y. W.; Tian, F.; Gao, P.; Yang, J. SnP2O7 covered carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater.2018, 28, 1804672.

    Google Scholar 

  3. Huang, Y. Y.; Zheng, Y. H.; Li, X.; Adams, F.; Luo, W.; Huang, Y. H.; Hu, L. B. Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett.2018, 3, 1604–1612.

    CAS  Google Scholar 

  4. Meng, Q. S.; Lu, Y. X.; Ding, F. X.; Zhang, Q. Q.; Chen, L. Q.; Hu, Y. S. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett.2019, 4, 2608–2612.

    CAS  Google Scholar 

  5. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater.2013, 23, 947–958.

    CAS  Google Scholar 

  6. Sun, B.; Xiong, P.; Maitra, U.; Langsdorf, D.; Yan, K.; Wang, C. Y.; Janek, J.; Schroder, D.; Wang, G. X. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.201903891.

  7. Lee, B.; Paek, E.; Mitlin, D.; Lee, S. W. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev.2019, 119, 5416–5460.

    CAS  Google Scholar 

  8. Zheng, X. Y.; Bommier, C.; Luo, W.; Jiang, L. H.; Hao, Y. N.; Huang, Y. H. Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions. Energy Storage Mater.2019, 16, 6–23.

    Google Scholar 

  9. Zhao, C. L.; Lu, Y. X.; Yue, J. M.; Pan, D.; Qi, Y. R.; Hu, Y. S.; Chen, L. Q. Advanced Na metal anodes. J. Energy Chem.2018, 27, 1584–1596.

    Google Scholar 

  10. Lei, D. N.; He, Y. B.; Huang, H. J.; Yuan, Y. F.; Zhong, G. M.; Zhao, Q.; Hao, X. G.; Zhang, D. F.; Lai, C.; Zhang, S. W. et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun.2019, 10, 4244.

    Google Scholar 

  11. Doi, K.; Yamada, Y.; Okoshi, M.; Ono, J.; Chou, C. P.; Nakai, H.; Yamada, A. Reversible sodium metal electrodes: Is fluorine an essential interphasial component? Angew. Chem., Int. Ed.2019, 58, 8024–8028.

    CAS  Google Scholar 

  12. Sun, H.; Zhu, G. Z.; Xu, X. T.; Liao, M.; Li, Y. Y.; Angell, M.; Gu, M.; Zhu, Y. M.; Hung, W. H.; Li, J. C. et al. A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte. Nat. Commun.2019, 10, 3302.

    Google Scholar 

  13. Yu, Q. P.; Lu, Q. W.; Qi, X. G.; Zhao, S. Y.; He, Y. B.; Liu, L. L.; Li, J.; Zhou, D.; Hu, Y. S.; Yang, Q. H. et al. Liquid electrolyte immobilized in compact polymer matrix for stable sodium metal anodes. Energy Storage Mater.2019, 23, 610–616.

    Google Scholar 

  14. Liu, L. L.; Qi, X. G.; Yin, S. J.; Zhang, Q. Q.; Liu, X. Z.; Suo, L. M.; Li, H.; Chen, L. Q.; Hu, Y. S. In situ formation of a stable interface in solid-state batteries. ACS Energy Lett.2019, 4, 1650–1657.

    CAS  Google Scholar 

  15. Seh, Z. W.; Sun, J.; Sun, Y. M.; Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci.2015, 1, 449–455.

    CAS  Google Scholar 

  16. Luo, W.; Lin, C. F.; Zhao, O.; Noked, M.; Zhang, Y.; Rubloff, G. W.; Hu, L. B. Ultrathin surface coating enables the stable sodium metal anode. Adv. Energy Mater.2017, 7, 1601526.

    Google Scholar 

  17. Tian, H. Z.; Seh, Z. W.; Yan, K.; Fu, Z. H.; Tang, P.; Lu, Y. Y.; Zhang, R. F.; Legut, D.; Cui, Y.; Zhang, Q. F. Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes. Adv. Energy Mater.2017, 7, 1602528.

    Google Scholar 

  18. Li, T.; Shi, P.; Zhang, R.; Liu, H.; Cheng, X. B.; Zhang, Q. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Res.2019, 12, 2224–2229.

    CAS  Google Scholar 

  19. Luo, W.; Zhang, Y.; Xu, S. M.; Dai, J. Q.; Hitz, E.; Li, Y. J.; Yang, C. P.; Chen, C. J.; Liu, B. Y.; Hu, L. B. Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable Na metal anode. Nano Lett.2017, 17, 3792–3797.

    CAS  Google Scholar 

  20. Wang, A. X.; Hu, X. F.; Tang, H. Q.; Zhang, C. Y.; Liu, S.; Yang, Y. W.; Yang, Q. H.; Luo, J. Y. Processable and moldable sodium-metal anodes. Angew. Chem., Int. Ed.2017, 56, 11921–11926.

    CAS  Google Scholar 

  21. Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Zhou, C. W. A carbon nanofiber network for stable lithium metal anodes with high coulombic efficiency and long cycle life. Nano Res.2016, 9, 3428–3436.

    CAS  Google Scholar 

  22. Zheng, X. Y.; Yang, W. J.; Wang, Z. Q.; Huang, L. Q.; Geng, S.; Wen, J. Y.; Luo, W.; Huang, Y. H. Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes. Nano Energy2020, 69, 104387.

    CAS  Google Scholar 

  23. Zheng, X. Y.; Li, P.; Cao, Z.; Luo, W.; Sun, F. Z.; Wang, Z. Q.; Ding, B.; Wang, G. X.; Huang, Y. H. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers. Small2019, 15, 1902688.

    CAS  Google Scholar 

  24. Chu, C. X.; Wang, N. N.; Li, L. L.; Lin, L. D.; Tian, F.; Li, Y. L.; Yang, J.; Dou, S. X.; Qian, Y. T. Uniform nucleation of sodium in 3D carbon nanotube framework via oxygen doping for long-life and efficient Na metal anodes. Energy Storage Mater.2019, 23, 137–143.

    Google Scholar 

  25. Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature2019, 572, 511–515.

    CAS  Google Scholar 

  26. Sand, H. J. S. III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Lond. Edinb. Dublin Philos. Mag. J. Sci.1901, 1, 45–79.

    CAS  Google Scholar 

  27. Tang, S.; Zhang, Y. Y.; Zhang, X. G.; Li, J. T.; Wang, X. Y.; Yan, J. W.; Wu, D. Y.; Zheng, M. S.; Dong, Q. F.; Mao, B. W. Stable Na plating and stripping electrochemistry promoted by in situ construction of an alloy-based sodiophilic interphase. Adv. Mater.2019, 31, 1807495.

    Google Scholar 

  28. Zhu, M. Q.; Li, S. M.; Li, B.; Gong, Y. J.; Du, Z. G.; Yang, S. B. Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Sci. Adv.2019, 5, eaau6264.

    CAS  Google Scholar 

  29. Wang, Z. H.; Li, M. K.; Ruan, C. Q.; Liu, C. J.; Zhang, C.; Xu, C.; Edström, K.; Strømme, M.; Nyholm, L. Conducting polymer paper-derived mesoporous 3D N-doped carbon current collectors for Na and Li metal anodes: A combined experimental and theoretical study. J. Phys. Chem. C2018, 122, 23352–23363.

    CAS  Google Scholar 

  30. Li, P. R.; Xu, T. H.; Ding, P.; Deng, J.; Zha, C. Y.; Wu, Y. L.; Wang, Y. Y.; Li, Y. G. Highly reversible Na and K metal anodes enabled by carbon paper protection. Energy Storage Mater.2018, 15, 8–13.

    Google Scholar 

  31. Chi, S. S.; Qi, X. G.; Hu, Y. S.; Fan, L. Z. 3D flexible carbon felt host for highly stable sodium metal anodes. Adv. Energy Mater.2018, 8, 1702764.

    Google Scholar 

  32. Ye, L.; Liao, M.; Zhao, T. C.; Sun, H.; Zhao, Y.; Sun, X. M.; Wang, B. J.; Peng, H. S. A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries. Angew. Chem., Int. Ed.2019, 58, 17054–17060.

    CAS  Google Scholar 

  33. Zheng, Z. J.; Zeng, X. X.; Ye, H.; Cao, F. F.; Wang, Z. B. Nitrogen and oxygen Co-doped graphitized carbon fibers with sodiophilic-rich sites guide uniform sodium nucleation for ultrahigh-capacity sodium-metal anodes. ACS Appl. Mater. Interfaces2018, 10, 30417–30425.

    CAS  Google Scholar 

  34. Zhao, Y.; Yang, X. F.; Kuo, L. Y.; Kaghazchi, P.; Sun, Q.; Liang, J. N.; Wang, B. Q.; Lushington, A.; Li, R. Y.; Zhang, H. M. et al. High capacity, dendrite-free growth, and minimum volume change Na metal anode. Small2018, 14, 1703717.

    Google Scholar 

  35. Sun, B.; Li, P.; Zhang, J. Q.; Wang, D.; Munroe, P.; Wang, C. Y.; Notten, P. H. L.; Wang, G. X. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv. Mater.2018, 30, 1801334.

    Google Scholar 

  36. Wang, E. H.; Chen, M. Z.; Liu, X. H.; Liu, Y. M.; Guo, H. P.; Wu, Z. G.; Xiang, W.; Zhong, B. H.; Guo, X. D.; Chou, S. L. et al. Organic cross-linker enabling a 3D porous skeleton-supported Na3V2(PO4)3/ carbon composite for high power sodium-ion battery cathode. Small Methods2019, 3, 1800169.

    CAS  Google Scholar 

  37. Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169–11186.

    CAS  Google Scholar 

  38. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B1999, 59, 1758–1775.

    CAS  Google Scholar 

  39. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B1994, 50, 17953–17979.

    Google Scholar 

  40. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

    CAS  Google Scholar 

  41. Cheng, X. B.; Zhao, M. Q.; Chen, C.; Pentecost, A.; Maleski, K.; Mathis, T.; Zhang, X. Q.; Zhang, Q.; Jiang, J. J.; Gogotsi, Y. Nano-diamonds suppress the growth of lithium dendrites. Nat. Commun.2017, 8, 336.

    Google Scholar 

  42. Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr.2008, 41, 653–658.

    CAS  Google Scholar 

  43. Morita, K.; Murata, Y.; Ishitani, A.; Murayama, K.; Ono, T.; Nakajima, A. Characterization of commercially available PAN (polyacrylonitrile)-based carbon fibers. Pure Appl. Chem.1986, 58, 455–468.

    CAS  Google Scholar 

  44. Ye, H.; Wang, C. Y.; Zuo, T. T.; Wang, P. F.; Yin, Y. X.; Zheng, Z. J.; Wang, P.; Cheng, J.; Cao, F. F.; Guo, Y. G. Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3-type cathodes. Nano Energy2018, 48, 369–376.

    CAS  Google Scholar 

  45. Yoon, H. J.; Hong, S. K.; Lee, M. E.; Hwang, J.; Jin, H. J.; Yun, Y. S. Sulfur-doped carbon nanotemplates for sodium metal anodes. ACS Appl. Energy Mater.2018, 1, 1846–1852.

    CAS  Google Scholar 

  46. Kharissova, O. V.; Kharisov, B. I. Variations of interlayer spacing in carbon nanotubes. RSC Adv.2014, 4, 30807–30815.

    CAS  Google Scholar 

  47. Wang, S.; Chen, Z. H.; Ma, W. J.; Ma, Q. S. Influence of heat treatment on physical-chemical properties of PAN-based carbon fiber. Ceram. Int.2006, 32, 291–295.

    CAS  Google Scholar 

  48. Ko, T. H. Raman spectrum of modified PAN-based carbon fibers during graphitization. J. Appl. Polym. Sci.1996, 59, 577–580.

    CAS  Google Scholar 

  49. Lee, K. S.; Lee, W. J.; Park, N. G.; Kim, S. O.; Park, J. H. Transferred vertically aligned N-doped carbon nanotube arrays: Use in dye-sensitized solar cells as counter electrodes. Chem. Commun.2011, 47, 4264–4266.

    CAS  Google Scholar 

  50. Wang, Y. Q.; Fugetsu, B.; Wang, Z. P.; Gong, W.; Sakata, I.; Morimoto, S.; Hashimoto, Y.; Endo, M.; Dresselhaus, M.; Terrones, M. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. Sci. Rep.2017, 7, 40259.

    CAS  Google Scholar 

  51. Weidenthaler, C.; Lu, A. H.; Schmidt, W.; Schüth, F. X-ray photoelectron spectroscopic studies of PAN-based ordered mesoporous carbons (OMC). Microp. Mesop. Mater.2006, 88, 238–243.

    CAS  Google Scholar 

  52. Tang, S.; Qiu, Z.; Wang, X. Y.; Gu, Y.; Zhang, X. G.; Wang, W. W.; Yan, J. W.; Zheng, M. S.; Dong, Q. F.; Mao, B. W. A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy2018, 48, 101–106.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Fundamental Research Funds for the Central Universities of China (No. 20720190013), the Guangdong Basic and Applied Basic Research Foundation (Nos. 2019A1515011070 and 2019B151502045), and the National Natural Science Foundation of China (Nos. 51972351 and 51802361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baihua Qu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Lei, D., Wang, J. et al. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Res. 13, 2136–2142 (2020). https://doi.org/10.1007/s12274-020-2820-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2820-y

Keywords

Navigation