Skip to main content

Advertisement

Log in

Dual-Carbon-Decorated Na3V2(PO4)3 Material for Sodium-Ion Batteries

  • Topical Collection: Advanced Metal Ion Batteries
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sodium superionic conductor (NASICON)-type phosphate Na3V2(PO4)3 has been actively explored as a prospective cathode material for sodium-ion batteries, which serve as a cost-effective alternative to the current lithium-ion batteries. However, the electrochemical sodium storage performance of phosphates is far from expectation due to the intrinsic limitation in electron conduction. Herein, we design and fabricate Na3V2(PO4)3 material modified with dual-carbon decoration. In this material, Na3V2(PO4)3 particles coated with amorphous carbon are further integrated into carbon nanofibers, resulting in a dual-carbon-decorated heterostructure. As dual-carbon decoration offers an avenue for electron transport, this Na3V2(PO4)3 cathode material exhibits an initial capacity of 109.7 mA h g−1 and retains 73.2 mA h g−1 at a high rate of 20 C after 1000 cycles, demonstrating robust performance for sodium storage. In situ galvanostatic intermittent titration and electrochemical impedance spectroscopy measurements reveal a significant improvement in the electronic and ionic conductivity of the dual-carbon-decorated Na3V2(PO4)3, which contributes to superior performance of the cathode material. In general, this work provides a simple but promising solution to phosphate materials for high-performance sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. D. Larcher and J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  CAS  Google Scholar 

  2. X. Xiang, K. Zhang, and J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27, 5343–5364 (2015).

    Article  CAS  Google Scholar 

  3. C. Liu, F. Li, L.P. Ma, and H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, E28-62 (2010).

    Article  CAS  Google Scholar 

  4. F. Schipper, P. Nayak, E. Erickson, S. Amalraj, O. Srur-Lavi, T. Penki, M. Talianker, J. Grinblat, H. Sclar, O. Breuer, C. Julien, N. Munichandraiah, D. Kovacheva, M. Dixit, D. Major, B. Markovsky, and D. Aurbach, Study of cathode materials for lithium-ion batteries: recent progress and new challenges. Inorganics 5, 32 (2017).

    Article  Google Scholar 

  5. Z. Zhu, H. Peelaers, and C.G. Van de Walle, Hydrogen-induced degradation of NaMnO2. Chem. Mater. 31, 5224–5228 (2019).

    Article  CAS  Google Scholar 

  6. E. de la Llave, V. Borgel, K.J. Park, J.Y. Hwang, Y.K. Sun, P. Hartmann, F.F. Chesneau, and D. Aurbach, Comparison between na-ion and li-ion cells: understanding the critical role of the cathodes stability and the Anodes pretreatment on the cells behavior. ACS Appl. Mater. Interfaces 8, 1867–1875 (2016).

    Article  Google Scholar 

  7. R.J. Clément, D.S. Middlemiss, I.D. Seymour, A.J. Ilott, and C.P. Grey, Insights into the nature and evolution upon electrochemical cycling of planar defects in the β-NaMnO2 na-ion battery cathode: an NMR and first-principles density functional theory approach. Chem. mater. 28, 8228–8239 (2016).

    Article  Google Scholar 

  8. C. Chen, W. Huang, Y. Li, M. Zhang, K. Nie, J. Wang, W. Zhao, R. Qi, C. Zuo, Z. Li, H. Yi, and F. Pan, P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries. Nano Energy 90, 106504 (2021).

    Article  CAS  Google Scholar 

  9. Q. Zhao, F.K. Butt, M. Yang, Z. Guo, X. Yao, M.J.M. Zapata, Y. Zhu, X. Ma, and C. Cao, Tuning oxygen redox chemistry of P2-type manganese-based oxide cathode via dual Cu and Co substitution for sodium-ion batteries. Energy Storage Mater. 41, 581–587 (2021).

    Article  Google Scholar 

  10. C. Wang, L. Liu, S. Zhao, Y. Liu, Y. Yang, H. Yu, S. Lee, G.H. Lee, Y.M. Kang, R. Liu, F. Li, and J. Chen, Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat. Commun. 12, 2256 (2021).

    Article  CAS  Google Scholar 

  11. X.L. Li, T. Wang, Y. Yuan, X.Y. Yue, Q.C. Wang, J.Y. Wang, J. Zhong, R.Q. Lin, Y. Yao, X.J. Wu, X.Q. Yu, Z.W. Fu, Y.Y. Xia, X.Q. Yang, T. Liu, K. Amine, Z. Shadike, Y.N. Zhou, and J. Lu, Whole-voltage-range oxygen redox in P2-layered cathode materials for sodium-ion batteries. Adv. Mater. 33, e2008194 (2021).

    Article  Google Scholar 

  12. H. Chu, Y. Pei, Z. Cui, C. Steven, P. Dong, P.M. Ajayan, M. Ye, and J. Shen, A 3D graphene current collector boosts ultrahigh specific capacity in a highly uniform Prussian blue@graphene composite as a freestanding cathode for sodium ion batteries. Nanoscale 10, 14697–14704 (2018).

    Article  CAS  Google Scholar 

  13. Y. Jiang, S. Yu, B. Wang, Y. Li, W. Sun, Y. Lu, M. Yan, B. Song, and S. Dou, Prussian blue@c composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 26, 5315–5321 (2016).

    Article  CAS  Google Scholar 

  14. Q. Zhang, L. Fu, J. Luan, X. Huang, Y. Tang, H. Xie, and H. Wang, Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. J. Power Sources 395, 305–313 (2018).

    Article  CAS  Google Scholar 

  15. C. Yan, A. Zhao, F. Zhong, X. Feng, W. Chen, J. Qian, X. Ai, H. Yang, and Y. Cao, A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. Electrochim. Acta 332, 135533 (2020).

    Article  CAS  Google Scholar 

  16. D. Zuo, C. Wang, J. Han, J. Wu, H. Qiu, Q. Zhang, Y. Lu, Y. Lin, and X. Liu, Oriented formation of a prussian blue nanoflower as a high performance cathode for sodium ion batteries. ACS Sustain. Chem. Eng. 8, 16229–16240 (2020).

    Article  CAS  Google Scholar 

  17. W. Wang, Y. Gang, J. Peng, Z. Hu, Z. Yan, W. Lai, Y. Zhu, D. Appadoo, M. Ye, Y. Cao, Q.F. Gu, H.K. Liu, S.X. Dou, and S.L. Chou, Effect of eliminating water in prussian blue cathode for sodium-ion batteries. Adv. Funct. Mater. 32, 2111727 (2022).

    Article  CAS  Google Scholar 

  18. Y. Xu, Q. Wei, C. Xu, Q. Li, Q. An, P. Zhang, J. Sheng, L. Zhou, and L. Mai, Layer-by-layer Na3V2(PO4)3embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 6, 1600389 (2016).

    Article  Google Scholar 

  19. J. Zhang, X. Zhou, Y. Wang, J. Qian, F. Zhong, X. Feng, W. Chen, X. Ai, H. Yang, and Y. Cao, Highly electrochemically-reversible mesoporous Na2FePO4F/C as cathode material for high-performance sodium-ion batteries. Small 15, e1903723 (2019).

    Article  Google Scholar 

  20. X. Ma, J. Xia, X. Wu, Z. Pan, and P.K. Shen, Remarkable enhancement in the electrochemical activity of maricite NaFePO4 on high-surface-area carbon cloth for sodium-ion batteries. Carbon 146, 78–87 (2019).

    Article  CAS  Google Scholar 

  21. W. Ren, Z. Zheng, C. Xu, C. Niu, Q. Wei, Q. An, K. Zhao, M. Yan, M. Qin, and L. Mai, Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries. Nano Energy 25, 145–153 (2016).

    Article  CAS  Google Scholar 

  22. P. Barpanda, G. Oyama, S. Nishimura, S.C. Chung, and A.A. Yamada, 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014).

    Article  CAS  Google Scholar 

  23. X. Li, S. Jiang, S. Li, J. Yao, Y. Zhao, T. Bashir, S. Zhou, S. Yang, W. Li, W. Zhu, T. Liu, J. Zhao, and L. Gao, Overcoming the rate-determining kinetics of the Na3V2O2(PO4)2F cathode for ultrafast sodium storage by heterostructured dual-carbon decoration. J. Mater. Chem. A 9, 11827–11838 (2021).

    Article  CAS  Google Scholar 

  24. A.H. Salehi, S.M. Masoudpanah, M. Hasheminiasari, A. Yaghtin, D. Safanama, C.K. Ong, S. Adams, K. Zaghib, and M.V. Reddy, Facile synthesis of hierarchical porous Na3V2(PO4)3/C composites with high-performance Na storage properties. J. Power Sources 481, 228828 (2021).

    Article  CAS  Google Scholar 

  25. X. Zhang, X. Rui, D. Chen, H. Tan, D. Yang, S. Huang, and Y. Yu, Na3V2(PO4)3: an advanced cathode for sodium-ion batteries. Nanoscale 11, 2556–2576 (2019).

    Article  CAS  Google Scholar 

  26. J. Hwang, K. Takeuchi, K. Matsumoto, and R. Hagiwara, NASICON vs. Na metal: a new counter electrode to evaluate electrodes for Na secondary batteries. J. Mater. Chem. A 7, 27057–27065 (2019).

    Article  CAS  Google Scholar 

  27. Q. Zheng, H. Yi, X. Li, and H. Zhang, Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage. J. Energy Chem. 27, 1597–1617 (2018).

    Article  Google Scholar 

  28. B. Zhang, K. Ma, X. Lv, K. Shi, Y. Wang, Z. Nian, Y. Li, L. Wang, L. Dai, and Z. He, Recent advances of NASICON-Na3V2(PO4)3 as cathode for sodium-ion batteries: synthesis, modifications, and perspectives. J. Alloy. Compd. 867, 159060 (2021).

    Article  CAS  Google Scholar 

  29. T. Jin, H. Li, K. Zhu, P.F. Wang, P. Liu, and L. Jiao, Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 49, 2342–2377 (2020).

    Article  Google Scholar 

  30. G. Varshney, and P. Jaiswal, A comparative study on advanced NASICON type and other effective materials for sodium ion batteries (SIBs). Mater. Today: Proc. 44, 1776–1782 (2021).

    CAS  Google Scholar 

  31. Z. Jian, Y.S. Hu, X. Ji, and W. Chen, NASICON-structured materials for energy storage. Adv. Mater. 29, 1601925 (2017).

    Article  Google Scholar 

  32. H.-B. Huang, S.-H. Luo, C.-L. Liu, Y. Yang, Y.-C. Zhai, L.-J. Chang, and M.-Q. Li, Double-carbon coated Na3V2(PO4)3 as a superior cathode material for Na-ion batteries. Appl. Surf. Sci. 487, 1159–1166 (2019).

    Article  CAS  Google Scholar 

  33. S. Jiang and Y. Wang, Phosphorus-doped graphene-improved Na3V2(PO4)3@C nanocomposite possessing high-rate performance for electrochemical energy storage. Ceram. Int. 45, 11600–11606 (2019).

    Article  CAS  Google Scholar 

  34. X. Cao, Q. Sun, L. Zhu, and L. Xie, Na3V2(PO4)3 nanoparticles confined in functional carbon framework towards high-rate and ultralong-life sodium storage. J. Alloy. Compd. 791, 296–306 (2019).

    Article  CAS  Google Scholar 

  35. Z. Jian, L. Zhao, H. Pan, Y.-S. Hu, H. Li, W. Chen, and L. Chen, Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86–89 (2012).

    Article  CAS  Google Scholar 

  36. K. Saravanan, C.W. Mason, A. Rudola, K.H. Wong, and P. Balaya, The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3for sodium ion batteries. Adv. Energy Mater. 3, 444–450 (2013).

    Article  CAS  Google Scholar 

  37. V.I.E. Bruyère, L.A. García Rodenas, P.J. Morando, M.A. Blesa Reduction of vanadium(v) by oxalic acid in aqueous acid solutions. J. Chem. Soc., Dalton Trans. 3593–3597 (2001).

  38. Q. Li, Z. Wen, C. Fan, T. Zeng, and S. Han, Chemical reaction characteristics, structural transformation and electrochemical performances of new cathode LiVPO4F/C synthesized by a novel one-step method for lithium ion batteries. RSC Adv. 8, 7044–7054 (2018).

    Article  CAS  Google Scholar 

  39. Q. Zhu, H. Cheng, X. Zhang, L. He, L. Hu, J. Yang, Q. Chen, and Z. Lu, Improvement in electrochemical performance of Na3V2(PO4)3/C cathode material for sodium-ion batteries by K-Ca co-doping. Electrochim. Acta 281, 208–217 (2018).

    Article  CAS  Google Scholar 

  40. I. Zatovsky, NASICON-type Na3V2(PO4)3. Acta Crystallogr. Section E 66, i12 (2010).

    Article  CAS  Google Scholar 

  41. Z. Zhou, N. Li, C. Zhang, X. Chen, F. Xu, and C. Peng, Na3V2(PO4)3 nanoparticles encapsulated in carbon nanofibers with excellent Na+ storage for sodium-ion batteries. Solid State Ion. 326, 77–81 (2018).

    Article  CAS  Google Scholar 

  42. D. Guo, J. Qin, Z. Yin, J. Bai, Y.-K. Sun, and M. Cao, Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 45, 136–147 (2018).

    Article  CAS  Google Scholar 

  43. L. Bi, Z. Miao, X. Li, Z. Song, Q. Zheng, and D. Lin, Improving electrochemical performance of Na3(VPO4)2O2F cathode materials for sodium ion batteries by constructing conductive scaffold. Electrochim. Acta 337, 135816 (2020).

    Article  CAS  Google Scholar 

  44. L. Zhu, G. Ding, Q. Sun, L. Xie, and X. Cao, Na3V2(PO4)3/C composites as low-cost and high-performance cathode materials for sodium-ion batteries. Int. J. Energy Res. 45, 4534–4542 (2020).

    Article  Google Scholar 

  45. X. Wan, K. Liu, P. Lei, W. Zheng, X. Xiang, and M. Sun, Carbon nanolayer-coated Na3V2(PO4)3 nanocrystals embedded in conductive carbon matrix as high-performance cathode for sodium-ion batteries. ChemElectroChem 5, 2630–2635 (2018).

    Article  CAS  Google Scholar 

  46. L.-L. Zheng, Y. Xue, S.-E. Hao, and Z.-B. Wang, Porous Na3V2(PO4)3 prepared by freeze-drying method as high performance cathode for sodium-ion batteries. Ceram. Int. 44, 9880–9886 (2018).

    Article  CAS  Google Scholar 

  47. X. Liu, G. Feng, Z. Wu, D. Wang, C. Wu, L. Yang, W. Xiang, Y. Chen, X. Guo, and B. Zhong, Investigating the influence of sodium sources towards improved Na3V2 (PO4)3 cathode of sodium-ion batteries. J. Alloy. Compd. 815, 152430 (2020).

    Article  CAS  Google Scholar 

  48. X. Liu, E. Wang, G. Feng, Z. Wu, W. Xiang, X. Guo, J. Li, B. Zhong, and Z. Zheng, Compared investigation of carbon-decorated Na3V2(PO4)3 with saccharides of different molecular weights as cathode of sodium ion batteries. Electrochim. Acta 286, 231–241 (2018).

    Article  CAS  Google Scholar 

  49. X. Xu, F. Xiong, J. Meng, X. Wang, C. Niu, Q. An, and L. Mai, Vanadium–based nanomaterials: a promising family for emerging metal–ion batteries. Adv. Funct. Mater. 30, 1904398 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of this work by the Natural Science Foundation of China (Grant U1401248).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangfeng Ni or Lijun Gao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1108 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Mao, Q., Jia, Y. et al. Dual-Carbon-Decorated Na3V2(PO4)3 Material for Sodium-Ion Batteries. J. Electron. Mater. 52, 836–846 (2023). https://doi.org/10.1007/s11664-022-10128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10128-5

Keywords

Navigation