Skip to main content
Log in

Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

2D MXenes are highly attractive for achieving ultrafast and stable lithium/sodium storage due to their good electric conductivity and abundant redox active sites. While, effective strategies for scalable preparation of oligolayered MXenes are still under exploration. Herein, oligolayered Ti3C2Tx MXene is successfully obtained after conventional synthesis of multilayered Ti3C2 and subsequent delamination process via an organic solvent of tetramethyl-ammonium hydroxide (TMAOH). Comprehensive electrochemical study reveals that surface-controlled redox reaction dominated the charge storage behavior of oligolayered Ti3C2Tx with fast reaction kinetics. Impressively, the obtained oligolayered Ti3C2Tx exhibits excellent lithium/sodium storage performance, featured for a high specific capacity of 330 mAhg−1 at 1.0 Ag−1 after 800 cycles for lithium storage and 280 mAhg−1 at 0.5 Ag−1 after 500 cycles for sodium storage. Such impressive performance will advance the development of oligolayered Ti3C2Tx based materials for lithium/sodium storage and even broaden their application into energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, G. P.; Zhang, L.; Zhang, J. J., A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012, 41, 797–828.

    CAS  Google Scholar 

  2. Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy, 2018, 3, 279–289.

    Google Scholar 

  3. Armand, M.; Tarascon, J. M., Building better batteries. Nature, 2008, 451, 652–657.

    CAS  Google Scholar 

  4. Xiong, D. B.; Li, X. F.; Bai, Z. M.; Lu, S. G., Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small, 2018, 14, 1703419.

    Google Scholar 

  5. Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M., Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater., 2014, 26, 5310–5336.

    CAS  Google Scholar 

  6. Trudeau, M. L., Advanced materials for energy storage. MRS Bull., 1999, 24, 23–26.

    Google Scholar 

  7. Simon, P.; Gogotsi, Y.; Dunn, B., Where do batteries end and supercapacitors begin? Science, 2014, 343, 1210–1211.

    CAS  Google Scholar 

  8. Li, L.; Wu, Z.; Yuan, S.; Zhang, X. B., Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci., 2014, 7, 2101–2122.

    CAS  Google Scholar 

  9. Whittingham, M. S., Lithium batteries and cathode materials. Chem. Rev., 2004, 104, 4271–4302.

    CAS  Google Scholar 

  10. Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M., High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater., 2015, 27, 2042–2048.

    CAS  Google Scholar 

  11. Wang, Q. D.; Zhao, C. L.; Lu, Y. X.; Li, Y. M.; Zheng, Y. H.; Qi, Y. R.; Rong, X. H.; Jiang, L. W.; Qi, X. G.; Shao, Y. J., Advanced nanostructured anode materials for sodium-ion batteries. Small, 2017, 13, 1701835.

    Google Scholar 

  12. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K., Fine structure constant defines visual transparency of graphene. Science, 2008, 320, 1308.

    CAS  Google Scholar 

  13. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z., Graphene-like two-dimensional materials. Chem. Rev., 2013, 113, 3766–3798.

    CAS  Google Scholar 

  14. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 2013, 5, 263–275.

    Google Scholar 

  15. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7, 2898–2926.

    CAS  Google Scholar 

  16. Huang, X.; Zeng, Z. Y.; Zhang, H., Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev., 2013, 42, 1934–1946.

    CAS  Google Scholar 

  17. Zhu, J. F. Modification and Electrochemical Performance of Two-Dimensional Ti3C2(MXenes) Nanomaterial; Tsinghua University Press: Beijing, 2018.

    Google Scholar 

  18. Huang, L.; Ai, L. H.; Wang, M.; Jiang, J.; Wang, S. B., Hierarchical MoS2 nanosheets integrated Ti3C2 MXenes for electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy, 2019, 44, 965–976.

    CAS  Google Scholar 

  19. Ren, C. E.; Hatzell, K. B.; Alhabeb, M.; Ling, Z.; Mahmoud, K. A.; Gogotsi, Y., Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett., 2015, 6, 4026–4031.

    CAS  Google Scholar 

  20. Tang, Q.; Zhou, Z.; Shen, P. W., Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc., 2012, 134, 16909–16916.

    CAS  Google Scholar 

  21. Xu, S. K.; Wei, G. D.; Li, J. Z.; Ji, Y.; Klyui, N.; Izotov, V.; Han, W., Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method. Chem. Eng. J., 2017, 317, 1026–1036.

    CAS  Google Scholar 

  22. Luo, J. M.; Fang, C.; Jin, C. B.; Yuan, H. D.; Sheng, O. W.; Fang, R. Y.; Zhang, W. K.; Huang, H.; Gan, Y. P.; Xia, Y. et al., Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J. Mater. Chem. A, 2018, 6, 7794–7806.

    CAS  Google Scholar 

  23. Ma, K.; Jiang, H.; Hu, Y. J.; Li, C. Z., 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries. Adv. Funct. Mater., 2018, 28, 1804306.

    Google Scholar 

  24. Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W., Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516, 78–81.

    CAS  Google Scholar 

  25. Dall’Agnese, Y.; Lukatskaya, M. R.; Cook, K. M.; Taberna, P. L.; Gogotsi, Y.; Simon, P., High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun., 2014, 48, 118–122.

    Google Scholar 

  26. Wen, Y. Y.; Rufford, T. E.; Chen, X. Z.; Li, N.; Lu, M. Q.; Dai, L. M.; Wang, L. Z., Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38, 368–376.

    CAS  Google Scholar 

  27. Zhao, D. Y.; Zhao, R. Z.; Dong, S. H.; Miao, X. G.; Zhang, Z. W.; Wang, C. X.; Yin, L. W., Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci., 2019, 12, 2422–2432.

    CAS  Google Scholar 

  28. Sang, X. H.; Xie, Y.; Lin, M. W.; Alhabeb, M.; van Aken, K. L.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Unocic, R. R., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano, 2016, 10, 9193–9200.

    CAS  Google Scholar 

  29. Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y.; Yu, X. Q.; Nam, K. W.; Yang, X. Q.; Kolesnikov, A. I.; Kent, P. R. C., Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc., 2014, 136, 6385–6394.

    CAS  Google Scholar 

  30. Ma, R. Z.; Sasaki, T., Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. Res., 2015, 48, 136–143.

    CAS  Google Scholar 

  31. Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater., 2017, 29, 7633–7644.

    CAS  Google Scholar 

  32. Peng, J. H.; Chen, X. Z.; Ong, W. J.; Zhao, X. J.; Li, N., Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis. Chem, 2019, 5, 18–50.

    CAS  Google Scholar 

  33. Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater., 2016, 2, 1600255.

    Google Scholar 

  34. Jiang, H. M.; Wang, Z. G.; Yang, Q.; Tan, L. X.; Dong, L. C.; Dong, M. D., Ultrathin Ti3C2Tx (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett., 2019, 11, 31.

    Google Scholar 

  35. Liang, X.; Garsuch, A.; Nazar, L. F., Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed., 2015, 54, 3907–3911.

    CAS  Google Scholar 

  36. Ai, J. J.; Lei, Y. K.; Yang, S.; Lai, C. Y.; Xu, Q. J., SnS nanoparticles anchored on Ti3C2 nanosheets matrix via electrostatic attraction method as novel anode for lithium ion batteries. Chem. Eng. J., 2019, 357, 150–158.

    CAS  Google Scholar 

  37. Wang, X. H.; Zhou, Y. C., Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic. J. Mater. Chem., 2002, 12, 455–460.

    CAS  Google Scholar 

  38. Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K., Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 2016, 10, 2491–2499.

    CAS  Google Scholar 

  39. Krishnamoorthy, K.; Pazhamalai, P.; Sahoo, S.; Kim, S. J., Titanium carbide sheet based high performance wire type solid state supercapacitors. J. Mater. Chem. A, 2017, 5, 5726–5736.

    CAS  Google Scholar 

  40. Cheng, R. F.; Hu, T.; Zhang, H.; Wang, C. M.; Hu, M. M.; Yang, J. X.; Cui, C.; Guang, T. J.; Li, C. J.; Shi, C. et al., Understanding the lithium storage mechanism of Ti3C2Tx MXene. J. Phys. Chem. C, 2019, 123, 1099–1109.

    CAS  Google Scholar 

  41. Cai, K. J.; Zheng, Y.; Shen, P.; Chen, S. Y., TiCx−Ti2C nanocrystals and epitaxial graphene-based lamellae by pulsed laser ablation of bulk TiC in vacuum. CrystEngComm, 2014, 16, 5466–5474.

    CAS  Google Scholar 

  42. Pan, H.; Huang, X. X.; Zhang, R.; Wang, D.; Chen, Y. T.; Duan, X. M.; Wen, G. W., Titanium oxide-Ti3C2 hybrids as sulfur hosts in lithium-sulfur battery: Fast oxidation treatment and enhanced polysulfide adsorption ability. Chem. Eng. J., 2019, 358, 1253–1261.

    CAS  Google Scholar 

  43. Rozmysłowska-Wojciechowska, A.; Wojciechowski, T.; Ziemkowska, W.; Chlubny, L.; Olszyna, A.; Jastrzębska, A. M., Surface interactions between 2D Ti3C2/Ti2C MXenes and lysozyme. Appl. Surf. Sci., 2019, 473, 409–418.

    Google Scholar 

  44. Rakhi, R. B.; Ahmed, B.; Hedhili, M. N.; Anjum, D. H.; Alshareef, H. N., Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater., 2015, 27, 5314–5323.

    CAS  Google Scholar 

  45. Lian, P. C.; Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Wang, S.; Sun, C. L.; Qin, J. Q.; Shi, X. Y., Bao, X. H. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy2017, 40, 1–8.

    CAS  Google Scholar 

  46. Xie, Y.; Dall’Agnese, Y; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L.; Kent, P. R. C., Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 2014, 8, 9606–9615.

    CAS  Google Scholar 

  47. Kajiyama, S.; Szabova, L.; Sodeyama, K.; Iinuma, H.; Morita, R.; Gotoh, K.; Tateyama, Y.; Okubo, M.; Yamada, A., Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano, 2016, 10, 3334–3341.

    CAS  Google Scholar 

  48. Sun, S. J.; Xie, Z. L.; Yan, Y. R.; Wu, S. P., Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries. Chem. Eng. J., 2019, 366, 460–467.

    CAS  Google Scholar 

  49. Wang, B.; Wang, M. Y.; Liu, F. Y.; Zhang, Q.; Yao, S.; Liu, X. L.; Huang, F., Ti3C2: An ideal co-catalyst? Angew. Chem., Int. Ed., 2020, 59, 1914–1918.

    CAS  Google Scholar 

  50. Li, T. T.; Wang, B. W.; Ning, J.; Li, W.; Guo, G. N.; Han, D. D.; Xue, B.; Zou, J. X.; Wu, G. H.; Yang, Y. C. et al., Self-assembled nanoparticle supertubes as robust platform for revealing long-term, multiscale lithiation evolution. Matter, 2019, 7, 976–987.

    Google Scholar 

  51. Wang, J.; Polleux, J.; Lim, J.; Dunn, B., Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C, 2007, 111, 14925–14931.

    CAS  Google Scholar 

  52. Conway, B. E.; Birss, V.; Wojtowicz, J., The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources, 1997, 66, 1–14.

    CAS  Google Scholar 

  53. Lindstrom, H.; Sodergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E., Li+ ion insertion in TiO2 (anatase). 1. Chronoamperometry on CVD films and nanoporous films. J. Phys. Chem. B, 1997, 101, 7717.

    Google Scholar 

  54. Bard, A. J., Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; 2nd ed. Wiley, New York: 2001.

    Google Scholar 

  55. Liu, T. C.; Pell, W. G.; Conway, B. E.; Roberson, S. L. Behavior of molybdenum nitrides as materials for electrochemical capacitors comparison with ruthenium oxide. J. Electrochem. Soc.1998, 145, 1882–1888.

    CAS  Google Scholar 

  56. Chao, D. L.; Liang, P.; Chen, Z.; Bai, L. Y.; Shen, H.; Liu, X. X.; Xia, X. H.; Zhao, Y. L.; Savilov, S. V.; Lin, J. Y. et al., Pseudocapacitive na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano, 1936, 10, 10211–10219.

    Google Scholar 

  57. Zhu, J. F.; Tang, Y.; Yang, C. H.; Wang, F.; Cao, M. J., Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc., 2016, 163, A785–A791.

    CAS  Google Scholar 

  58. Rakhi, R. B.; Ahmed, B.; Anjum, D.; Alshareef, H. N., Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl. Mater. Interfaces, 2016, 8, 18806–18814.

    CAS  Google Scholar 

  59. Lv, W. J.; Zhu, J. F.; Wang, F.; Fang, Y., Facile synthesis and electrochemical performance of TiO2 nanowires/Ti3C2 composite. J. Mater. Sci. Mater. Electron., 2018, 29, 4881–4887.

    CAS  Google Scholar 

  60. Kang, W. P.; Tang, Y. B.; Li, W. Y.; Yang, X.; Xue, H. T.; Yang, Q. D.; Lee, C. S., High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode. Nanoscale, 2015, 7, 225–231.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science Research Initiation Fund of Central South University (No. 202045012), Key Research and Development Program of Jiangxi Province (No. 20181ACE50013), Fundamental Research Funds for the Central Universities of Central South University (No. 2019zzts708), and the National Natural Science Foundation of China (No. 61705152).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinghua Chang or Jianlong Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Wang, H., Jin, S. et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 13, 1659–1667 (2020). https://doi.org/10.1007/s12274-020-2789-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2789-6

Keywords

Navigation