Skip to main content
Log in

Emerging wet electrohydrodynamic approaches for versatile bioactive 3D interfaces

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

There is a compelling need for delicate nanomaterial design with various intricate functions and applications. Electrohydrodynamics applies electrostatic force to overcome the surface tension of a liquid jet, shrinking the jet through intrinsic jetting instability into submicron fibers or spheres, with versatility from a huge selection of materials, feasibility of extracellular matrix structure mimicry and multi-compartmentalization for tissue engineering and drug delivery. The process typically involves the collection and drying of fibers at a solid substrate, but the introduction of a liquid phase collection by replacing the solid collector with a coagulation bath can introduce a variety of new opportunities for both chemical and physical functionalizations in one single step. The so-called wet electrohydrodynamics is an emerging technique that enables a facile, homogeneous functionalization of the intrinsic large surface area of the submicron fibers/spheres. With a thorough literature sweep, we herein highlight the three main engineering features integrated through the single step wet electrospinning process in terms of creating functional biomaterials: (i) The fabrication of 3D macrostructures, (ii) in situ chemical functionalization, and (iii) tunable nano-topography. Through an emerging technique, wet electrohydrodynamics has demonstrated a great potential in interdisciplinary research for the development of functional 3D interfaces and materials with pertinent applications in all fields where secondary structured, functional surface is desired. Among these, engineered biomaterials bridging materials science with biology have already shown particular potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, C. J.; Stoyanov, S. D.; Stride, E.; Pelan, E.; Edirisinghe, M. Electrospinning versus fibre production methods: From specifics to technological convergence. Chem. Soc. Rev.2012, 41, 4708–4735.

    CAS  Google Scholar 

  2. Huang, Y.; Song, J. N.; Yang, C.; Long, Y. Z.; Wu, H. Scalable manufacturing and applications of nanofibers. Mater. Today2019, 28, 98–113.

    CAS  Google Scholar 

  3. Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol.2011, 6, 13–22.

    CAS  Google Scholar 

  4. Brown, T. D.; Dalton, P. D.; Hutmacher, D. W. Melt electrospinning today: An opportune time for an emerging polymer process. Prog. Polym. Sci.2016, 56, 116–166.

    CAS  Google Scholar 

  5. Agarwal, S.; Greiner, A.; Wendorff, J. H. Functional materials by electrospinning of polymers. Prog. Polym. Sci.2013, 38, 963–991.

    CAS  Google Scholar 

  6. Smit, E.; Biittner, U.; Sanderson, R. D. Continuous yarns from electrospun fibers. Polymer2005, 46, 2419–2423.

    CAS  Google Scholar 

  7. Sun, B.; Long, Y. Z.; Zhang, H. D.; Li, M. M.; Duvail, J. L.; Jiang, X. Y.; Yin, H. L. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog. Polym. Sci.2014, 39, 862–890.

    CAS  Google Scholar 

  8. Evrova, O.; Hosseini, V.; Milleret, V.; Palazzolo, G.; Zenobi-Wong, M.; Sulser, T.; Buschmann, J.; Eberli, D. Hybrid randomly electrospun poly(lactic-co-glycolic acid): Poly(ethylene oxide) (PLGA: PEO) fibrous scaffolds enhancing myoblast differentiation and alignment. ACSAppl. Mater. Interfaces2016, 8, 31574–31586.

    CAS  Google Scholar 

  9. Hwang, P. T. J.; Murdock, K.; Alexander, G. C.; Salaam, A. D.; Ng, J. I.; Lim, D. J.; Dean, D.; Jun, H. W. Poly(s-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering. J. Biomed. Mater. Res. Part A2016, 104, 1017–1029.

    CAS  Google Scholar 

  10. Taskin, M. B.; Xu, R. D.; Gregersen, H.; Nygaard, J. V.; Besenbacher, F.; Chen, M. L. Three-dimensional polydopamine functionalized coiled microfibrous scaffolds enhance human mesenchymal stem cells colonization and mild myofibroblastic differentiation. ACS Appl. Mater. Interfaces2016, 8, 15864–15873.

    CAS  Google Scholar 

  11. Yokoyama, Y.; Hattori, S.; Yoshikawa, C.; Yasuda, Y.; Koyama, H.; Takato, T.; Kobayashi, H. Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater. Lett.2009, 63, 754–756.

    CAS  Google Scholar 

  12. Gang, E. H.; Ki, C.S.; Kim, J. W.; Lee, J.; Cha, B. G.; Lee, K. H.; Park, Y. H. Highly porous three-dimensional poly(lactide-co-glycolide) (PLGA) microfibrous scaffold prepared by electrospinning method: A. comparison study with other PLGA type scaffolds on its biological evaluation. Fibers Polym.2012, 13, 685–691.

    CAS  Google Scholar 

  13. Hong, S.; Kim, G. H. Fabrication of size-controlled three-dimensional structures consisting of electrohydrodynamically produced poly-caprolactone micro/nanofibers. Appl. Phys. A2011, 103, 1009–1014.

    CAS  Google Scholar 

  14. Cai, X. J.; ten Hoopen, S.; Zhang, W. B.; Yi, C.; Yang, W. X.; Yang, F.; Jansen, J. A.; Walboomers, X. R.; Yelick, P. C. Influence of highly porous electrospun PLGA/PCL/nHA fibrous scaffolds on the differentiation of tooth bud cells in vitro. J. Biomed. Mater. Res. Part A2017, 105, 2597–2607.

    CAS  Google Scholar 

  15. Dong, X. R.; Zhang, J. Y.; Pang, L.; Chen, J. T.; Qi, M.; You, S. J.; Ren, N. Q. An anisotropic three-dimensional electrospun micro/ nanofibrous hybrid PLA/PCL scaffold. RSC Adv.2019, 9, 9838–9844.

    CAS  Google Scholar 

  16. Naseri-Nosar, M.; Salehi, M.; Hojjati-Emami, S. Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications. Int. J. Biol. Macromol.2017,103, 701–708.

    CAS  Google Scholar 

  17. Kashiwabuchi, R.; Parikh, K. S.; Omiadze, R.; Zhang, S. M.; Luo, L. X.; Patel, H. V.; Xu, Q. G.; Ensign, L. M.; Mao, H. Q.; Hanes, J. et al. Hojjati-Emami, Development of absorbable, antibiotic-eluting sutures for ophthalmic surgery. Trans. Vis. Sci. Technol.2017, 6, DOI: 10.1167/tvst.6.1.1.

  18. Luo, J. J.; Zhang, H. T.; Zhu, J.; Cui, X. K.; Gao, J. J.; Wang, X.; Xiong, J. Hojjati-Emami, 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Colloid. Surf. B. Biointerf2018, 163, 369–378.

    CAS  Google Scholar 

  19. Wang, L.; Wu, Y. B.; Guo, B. L.; Ma, P. X. Hojjati-Emami, Nanofiber yarn/hydrogel core-shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano2015, 9, 9167–9179.

    CAS  Google Scholar 

  20. Coburn, J. M.; Gibson, M.; Monagle, S.; Patterson, Z.; Elisseeff, J. H. ACS NanoBioinspired nanofibers support chondrogenesis for articular cartilage repair. Prac. Natl. Acad. Sci. USA2012, 109, 10012–10017.

    CAS  Google Scholar 

  21. Wang, H.; Kong, L. Y.; Ziegler, G. R. Aligned wet-electrospun starch fiber mats. Food Hydrocol.2019, 90, 113–117.

    CAS  Google Scholar 

  22. Shepherd, L. M.; Frey, M. W.; Joo, Y. L. Immersion electrospinning as a. new method to direct fiber deposition. Macromol. Mater. Eng.2017, 302, 1700148.

    Google Scholar 

  23. Shin, T. J.; Park, S. Y.; Kim, H. J.; Lee, H. J.; Youk, J. H. Development of 3-D poly(trimethylenecarbonate-co-e-caprolactone)-block-poly(p-dioxanone) scaffold for bone regeneration with high porosity using a. wet electrospinning method. Biotechnol. Lett.2010, 32, 877–882.

    CAS  Google Scholar 

  24. Lim, J. S.; Ki, C. S.; Kim, J. W.; Lee, K. G.; Kang, S. W.; Kweon, H. Y.; Park, Y. H. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold. Biopolymers2012, 97, 265–275.

    CAS  Google Scholar 

  25. Kim, M. S.; Kim, G. H. Highly porous electrospun 3D poly-caprolactone/p-TCP biocomposites for tissue regeneration. Mater. Lett. 2014, 120, 246–250.

    CAS  Google Scholar 

  26. Kim, M. S.; Kim, G. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohyd. Polym.2014, 114, 213–221.

    CAS  Google Scholar 

  27. Yang, W. X.; Yang, F.; Wang, Y. N.; Both, S. K.; Jansen, J. A. In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater.2013, 9, 4505–4512.

    CAS  Google Scholar 

  28. Kasuga, T.; Obata, A.; Maeda, H.; Ota, Y.; Yao, X. F.; Oribe, K. Siloxane-poly(lactic acid)-vaterite composites with 3D cotton-like structure. J. Mater. Sci. Mater. Med.2012, 23, 2349–2357.

    CAS  Google Scholar 

  29. Heo, J.; Nam, H.; Hwang, D.; Cho, S. J.; Jung, S. Y.; Cho, D. W.; Shim, J. H.; Lim, G. Enhanced cellular distribution and infiltration in a. wet electrospun three-dimensional fibrous scaffold using eccentric rotation-based hydrodynamic conditions. Sens. Actuators B-Chem.2016, 226, 357–363.

    CAS  Google Scholar 

  30. Shang, S. H.; Yang, F.; Cheng, X. R.; Walboomers, X. F.; Jansen, J. A. The effect of electrospun fibre alignment on the behaviour of rat periodontal ligament cells. Eur. Cells Mater.2010, 19, 180–192.

    CAS  Google Scholar 

  31. Elliott, M. B.; Ginn, B.; Fukunishi, T.; Bedja, D.; Suresh, A.; Chen, T.; Inoue, T.; Dietz, H. C.; Santhanam, L.; Mao, H. Q. et al. Regenerative and durable small-diameter graft as an arterial conduit. Prac Natl. Acad. Sci. USA2019, 116, 12710–12719.

    CAS  Google Scholar 

  32. Yan, L. D.; Si, S. X.; Chen, Y.; Yuan, T.; Fan, H. J.; Yao, Y. Y.; Zhang, Q. Y. Electrospun in-situ hybrid polyurethane/nano-Ti02 as wound dressings. FibersPolym.2011, 12, 207–213.

    CAS  Google Scholar 

  33. Zhang, M.; Lin, H.; Wang, Y. L.; Yang, G.; Zhao, H.; Sun, D. H. Fabrication and durable antibacterial properties of 3D porous wet electrospun RCSC/PCL nanofibrous scaffold with silver nanoparticles. Appl. Surf. Sci. 2017, 414, 52–62.

    CAS  Google Scholar 

  34. Martrou, G.; Leonetti, M.; Gigmes, D.; Trimaille, T. One-step preparation of surface modified electrospun microfibers as suitable supports for protein immobilization. Polym. Chem. 2017, 8, 1790–1796.

    CAS  Google Scholar 

  35. Farzamfar, S.; Naseri-Nosar, M.; Vaez, A.; Esmaeilpour, F.; Ehterami, A.; Sahrapeyma, H.; Samadian, H.; Hamidieh, A. A.; Ghorbani, S.; Goodarzi, A. et al. Neural tissue regeneration by a. gabapentin-loaded cellulose acetate/gelatin wet-electrospun scaffold. Cellulose2018, 25, 1229–1238.

    CAS  Google Scholar 

  36. Barber, P. S.; Griggs, C. S.; Bonner, J. R.; Rogers, R. D. Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells. Green Chem.2013, 15, 601–607.

    CAS  Google Scholar 

  37. Hou, L. J.; Udangawa, W. M. R. N.; Pochiraju, A.; Dong, W. J.; Zheng, Y. Y.; Linhardt, R. J.; Simmons, T. J. Synthesis of heparin-immobilized, magnetically addressable cellulose nanofibers for biomedical applications. ACS Biomater. Sci. Eng.2016, 2, 1905–1913.

    CAS  Google Scholar 

  38. Viswanathan, G.; Murugesan, S.; Pushparaj, V.; Nalamasu, O.; Ajayan, P. M.; Linhardt, R. J. Preparation of biopolymer fibers by electro-spinning from room temperature ionic liquids. Biomacromolecules2006, 7,415-418.

    CAS  Google Scholar 

  39. Meli, L.; Miao, J. J.; Dordick, J. S.; Linhardt, R. J. Electrospinning from room temperature ionic liquids for biopolymer fiber formation. Green Chem.2010, 12, 1883–1892.

    CAS  Google Scholar 

  40. Zheng, Y. Y.; Miao, J. J.; Maeda, N.; Frey, D.; Linhardt, R. J.; Simmons, T. J. Uniform nanoparticle coating of cellulose fibers during wet electrospinning. J. Mater. Chem. A2014, 2, 15029–15034.

    CAS  Google Scholar 

  41. Sa, V.; Kornev, K. G. A method for wet spinning of alginate fibers with a. high concentration of single-walled carbon nanotubes. Carbon2011, 49, 1859–1868.

    CAS  Google Scholar 

  42. Qin, Y. M. Alginate fibres: An overview of the production processes and applications in wound management. Polym. Int.2008, 57, 171–180.

    CAS  Google Scholar 

  43. Miraftab, M.; Qiao, Q.; Kennedy, J. R.; Anand, S. C.; Groocock, M. R. Fibres for wound dressings based on mixed carbohydrate polymer fibres. Carbohydr. Polym.2003, 53, 225–231.

    CAS  Google Scholar 

  44. Watthanaphanit, A.; Supaphol, P.; Furuike, T.; Tokura, S.; Tamura, H.; Rujiravanit, R. Novel chitosan-spotted alginate fibers from wet-spinning of alginate solutions containing emulsified chitosan-citrate complex and their characterization. Biomacromolecules2009, 70,320-327.

    CAS  Google Scholar 

  45. Cheng, J.; Jun, Y.; Qin, J. H.; Lee, S. H. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 2017, 114, 121–143.

    CAS  Google Scholar 

  46. Majidi, S. S.; Slemming-Adamsen, P.; Hanif, M.; Zhang, Z. Y.; Wang, Z. M.; Chen, M. L. Wet electrospun alginate/gelatin hydrogel nanofibers for 3D cell culture. Int. J. Biol. Macromol.2018, 118, 1648–1654.

    CAS  Google Scholar 

  47. Razal, J. M.; Gilmore, K. J.; Wallace, G. G Carbon nanotube biofiber formation in a. polymer-free coagulation bath. Adv. Fund. Mater.2008, 18, 61–66.

    CAS  Google Scholar 

  48. Nikoo, A. M.; Kadkhodaee, R.; Ghorani, B.; Razzaq, H.; Tucker, N. Controlling the morphology and material characteristics of electrospray generated calcium alginate microhydrogels. J. Microencapsulation2016, 33, 605–612.

    Google Scholar 

  49. Suksamran, T.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T.; Ruktanonchai, U.; Supaphol, P. Biodegradable alginate microparticles developed by electrohydrodynamic spraying techniques for oral delivery of protein. J. Microencapsulation2009, 26, 563–570.

    CAS  Google Scholar 

  50. Suksamran, T.; Ngawhirunpat, T.; Rojanarata, T.; Sajomsang, W.; Pitaksuteepong, T.; Opanasopit, P. Methylated N-(4-N,N-dimethylaminocinnamyl) chitosan-coated electrospray OVA-loaded microparticles for oral vaccination. Int. J. Pharm.2013, 448, 19–27.

    CAS  Google Scholar 

  51. Choi, D. H.; Subbiah, R.; Kim, I. H.; Han, D. K.; Park, K. Dual growth factor delivery using biocompatible core-shell microcapsules for angiogenesis. Small2013, 9, 3468–3476.

    CAS  Google Scholar 

  52. Lai, W. R.; Susha, A. S.; Rogach, A. L. Multicompartment microgel beads for co-delivery of multiple drugs at individual release rates. ACS Appl. Mater. Interfaces2016, 8, 871–880.

    CAS  Google Scholar 

  53. Ward, E.; Chan, E.; Gustafsson, K.; Jayasinghe, S. N. Combining bio-electrospraying with gene therapy: A. novel biotechnique for the delivery of genetic material via living cells. Analyst2010, 135, 1042–1049.

    CAS  Google Scholar 

  54. Yao, R.; Zhang, R. J.; Wang, X. H. Design and evaluation of a. cell microencapsulating device for cell assembly technology. J. Bioact. Compat. Polym.2009, 24, 48–62.

    Google Scholar 

  55. Xie, J. W.; Wang, C. H. Electrospray in the dripping mode for cell microencapsulation. J. Colloid Interface Sci. 2007, 312, 247–255.

    CAS  Google Scholar 

  56. Nguyen, D. K.; Son, Y. M.; Lee, N. E. Hydrogel encapsulation of cells in core-shell microcapsules for cell delivery. Adv. Healthc. Mater.2015, 4, 1537–1544.

    CAS  Google Scholar 

  57. Zhao, S. T.; Agarwal, P.; Rao, W.; Huang, H. S.; Zhang, R. L.; Liu, Z. G.; Yu, J. H.; Weisleder, N.; Zhang, W. J.; He, X. M. Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells. Integr. Biol.2014, 6, 874–884.

    CAS  Google Scholar 

  58. Ma, M. L.; Chiu, A.; Sahay, G.; Doloff, J. C.; Dholakia, N.; Thakrar, R.; Cohen, J.; Vegas, A.; Chen, D. L.; Bratlie, K. M. et al. Core-shell hydrogel microcapsules for improved islets encapsulation. Adv. Healthc. Mater.2013, 2, 667–672.

    CAS  Google Scholar 

  59. Kim, P. H.; Yim, H. G.; Choi, Y. J.; Kang, B. J.; Kim, J.; Kwon, S. M.; Kim, B. S.; Hwang, N. S.; Cho, J. Y. Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization. J. Controlled Release2014, 187, 1–13.

    CAS  Google Scholar 

  60. Jayasinghe, S. N. Bio-electrosprays: From bio-analytics to a. generic tool for the health sciences. Analyst2011, 136, 878–890.

    CAS  Google Scholar 

  61. Zussman, E. Encapsulation of cells within electrospun fibers. Polym Adv. Technol.2011, 22, 366–371.

    CAS  Google Scholar 

  62. Selimovic, S.; Oh, J.; Bae, H.; Dokmeci, M.; Khademhosseini, A. Microscale strategies for generating cell-encapsulating hydrogels. Polymers2012, 4, 1554–1579.

    CAS  Google Scholar 

  63. Poncelet, D.; de Vos, P.; Suter, N.; Jayasinghe, S. N. Bio-electrospraying and cell electrospinning: Progress and opportunities for basic biology and clinical sciences. Adv. Healthc. Mater.2012, 7, 27–34.

    Google Scholar 

  64. Lee, S. H.; Park, S. Y.; Choi, J. H. Fiber formation and physical properties of chitosan fiber crosslinked by epichlorohydrin in a. wet spinning system: The effect of the concentration of the crosslinking agent epichlorohydrin. J. Appl. Polym. Sci.2004, 92, 2054–2062.

    CAS  Google Scholar 

  65. Lee, S. H.; Park, S. M.; Kim, Y. Effect of the concentration of sodium acetate (SA) on crosslinking of chitosan fiber by epichlorohydrin (ECH) in a. wet spinning system. Carbohydr. Polym. 2007, 70, 53–60.

    CAS  Google Scholar 

  66. Denkbas, E. B.; Seyyal, M.; Piskin, E. Implantable 5-fluorouracil loaded chitosan scaffolds prepared by wet spinning. J. Membr. Sci.2000, 172, 33–38.

    CAS  Google Scholar 

  67. Wang, X. F.; Min, M. H.; Liu, Z. Y.; Yang, Y.; Zhou, Z.; Zhu, M. R.; Chen, Y. M.; Hsiao, B. S. Poly(ethyleneimine) nanofibrous affinity membrane fabricated via one step wet-electrospinning from poly(vinyl alcohol)-doped poly(ethyleneimine) solution system and its application. J. Membr. Sci.2011, 379, 191–199.

    CAS  Google Scholar 

  68. Teng, F. J.; Ding, H. R.; Huang, Y. Q.; Wang, J. W. Fabrication of three-dimensional nanofibrous gelatin scaffolds using one-step crosslink technique. J. Biomater. Sci. Polym. Ed.2018, 29, 1859–1875.

    CAS  Google Scholar 

  69. Tsukada, M.; Gotoh, Y.; Nagura, M.; Minoura, N.; Kasai, N.; Freddi, G. Structural changes of silk fibroin membranes induced by immersion in methanol aqueous solutions. J. Polym. Sci. Part B. Polym. Phys.1994, 32, 961–968.

    CAS  Google Scholar 

  70. Hofmann, S.; Foo, C. T. W. P.; Rossetti, F.; Textor, M.; Vunjak-Novakovic, G.; Kaplan, D. L.; Merkle, H. P.; Meinel, L. Silk fibroin as an organic polymer for controlled drug delivery. J. Control. Release2006, 111, 219–227.

    CAS  Google Scholar 

  71. Baimark, Y.; Srihanam, P. Effect of methanol treatment on regenerated silk fibroin microparticles prepared by the emulsification-diffusion technique. J. Appl. Sci.2009, 9, 3876–3881.

    CAS  Google Scholar 

  72. Yu, Q. Z.; Xu, S. L.; Zhang, H.; Gu, L.; Xu, Y. P.; Ko, F. Structure-property relationship of regenerated spider silk protein nano/ microfibrous scaffold fabricated by electrospinning. J. Biomed. Mater. Res. Part A2014, 102, 3828–3837.

    Google Scholar 

  73. Ki, C. S.; Kim, J. W.; Hyun, J. H.; Lee, K. H.; Hattori, M.; Rah, D. K.; Park, Y. H. Electrospun three-dimensional silk fibroin nanofibrous scaffold. J. Appl. Polym. Sci.2007, 106, 3922–3928.

    CAS  Google Scholar 

  74. Yang, S. Y.; Hwang, T. H.; Che, L. H.; Oh, J. S.; Ha, Y.; Ryu, W. H. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering. Biomed. Mater.2015, 10, 035011.

    Google Scholar 

  75. Ding, H. R.; Zhong, J. W.; Xu, R.; Song, F. F.; Yin, M.; Wu, Y. R.; Hu, Q. Y.; Wang, J. W. Establishment of 3D culture and induction of osteogenic differentiation of pre-osteoblasts using wet-collected aligned scaffolds. Mater. Sci. Eng. C2017, 71, 222–230.

    CAS  Google Scholar 

  76. Hadisi, Z.; Nourmohammadi, J.; Mohammadi, J. Composite of porous starch-silk fibroin nanofiber-calcium phosphate for bone regeneration. Ceram. Int.2015, 41, 10745–10754.

    CAS  Google Scholar 

  77. Akturk, O.; Kismet, K.; Yasti, A. C.; Kuru, S.; Duymus, M. E.; Kaya, R.; Caydere, M.; Hucumenoglu, S.; Keskin, D. Wet electrospun silk fibroin/gold nanoparticle 3D matrices for wound healing applications. RSC Adv.2016, 6, 13234–13250.

    CAS  Google Scholar 

  78. Matsuyama, H.; Teramoto, M.; Nakatani, R.; Maki, T. Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. I. Phase diagram and mass transfer process. J. Appl. Polym. Sci.1999, 74, 159–170.

    CAS  Google Scholar 

  79. Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. R. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules2002, 35, 8456–8466.

    CAS  Google Scholar 

  80. Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F. Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process. Macromolecules2004, 37, 573–578.

    CAS  Google Scholar 

  81. Dayal, P.; Liu, J.; Kumar, S.; Kyu, T. Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules2007, 40, 7689–7694.

    CAS  Google Scholar 

  82. McCann, J. T.; Marquez, M.; Xia, Y. N. Highly porous fibers by electrospinning into a. cryogenic liquid. J. Am. Chem. Soc.2006, 128, 1436–1437.

    CAS  Google Scholar 

  83. Thangaraju, E.; Rajiv, S.; Natarajan, T. S. Comparison of preparation and characterization of water-bath collected porous poly L-lactide microfibers and cellulose/silk fibroin based poly L-lactide nanofibers for biomedical applications. J. Polym. Res.2015, 22, 24.

    Google Scholar 

  84. Katsogiannis, K. A. G.; Vladisavljevic, G. T.; Georgiadou, S. Porous electrospun polycaprolactone (PCL) fibres by phase separation. Eur. Polym. J.2015, 69, 284–295.

    CAS  Google Scholar 

  85. Li, X. H.; Teng, K. Y.; Shi, J.; Wang, W.; Xu, Z. W.; Deng, H.; Lv, H. M.; Li, F. Y. Electrospun preparation of polylactic acid nanoporous fiber membranes via thermal-nonsolvent induced phase separation. J. Taiwan Inst. Chem. Eng.2016, 60, 636–642.

    CAS  Google Scholar 

  86. Nayani, K.; Katepalli, H.; Sharma, C. S.; Sharma, A.; Patil, S.; Venkataraghavan, R. Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Ind. Eng. Chem. Res.2012, 57, 1761–1766.

    Google Scholar 

  87. Wang, Y.; Zhu, L. H.; Chen, A. Z.; Xu, Q.; Hong, Y. J.; Wang, S. B. One-step method to prepare PLLA porous microspheres in a. high-voltage electrostatic anti-solvent process. Materials2016, 9, 368.

    Google Scholar 

  88. Feng, J. T.; Lin, L.; Chen, P. P.; Hua, W. D.; Sun, Q. M.; Ao, Z.; Liu, D. S.; Jiang, L.; Wang, S. T.; Han, D. Topographical binding to mucosa-exposed cancer cells: Pollen-mimetic porous microspheres with tunable pore sizes. ACS Appl. Mater. Interfaces2015, 7, 8961–8967.

    CAS  Google Scholar 

  89. Gao, Y.; Bai, Y. T.; Zhao, D.; Chang, M. W.; Ahmad, Z.; Li, J. S. Tuning microparticle porosity during single needle electrospraying synthesis via a. non-solvent-based physicochemical approach. Polymers2015, 7, 2701–2710.

    CAS  Google Scholar 

  90. Wu, Y. Q.; Clark, R. L. Controllable porous polymer particles generated by electrospraying. J. Colloid Interface Sci.2007, 310, 529–535.

    CAS  Google Scholar 

  91. Taskin, M. B.; Xia, D.; Besenbacher, F.; Dong, M. D.; Chen, M. L. Nanotopography featured polycaprolactone/polyethyleneoxide microfibers modulate endothelial cell response. Nanoscale2017, 9, 9218–9229.

    CAS  Google Scholar 

  92. Li, Y. F.; Rubert, M.; Asian, H.; Yu, Y.; Howard, K. A.; Dong, M. D.; Besenbacher, R.; Chen, M. L. Ultraporous interweaving electrospun microfibers from PCL-PEO binary blends and their inflammatory responses. Nanoscale2014, 6, 3392–3402.

    CAS  Google Scholar 

  93. Chen, Y. L.; Taskin, M. B.; Zhang, Z. Y.; Su, Y. C.; Han, X. J.; Chen, M. L. Bioadhesive anisotropic nanogrooved microfibers directing three-dimensional neurite extension. Biomater. Sci.2019, 7, 2165–2173.

    CAS  Google Scholar 

  94. Muzzarelli, R. A. A. Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar. Drugs2011, 9, 1510–1533.

    CAS  Google Scholar 

  95. Bazbouz, M. B.; Taylor, M.; Baker, D.; Ries, M. E.; Goswami, P. Dry-jet wet electrospinning of native cellulose microfibers with macroporous structures from ionic liquids. J. Appl. Polym. Sci.2019, 136, 47153.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding from Aarhus University Research Foundation (AUFF-E-2015-FLS-7-27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menglin Chen.

Ethics declarations

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taskin, M.B., Klausen, L.H., Dong, M. et al. Emerging wet electrohydrodynamic approaches for versatile bioactive 3D interfaces. Nano Res. 13, 315–327 (2020). https://doi.org/10.1007/s12274-020-2635-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2635-x

Keywords

Navigation