Skip to main content
Log in

One-step rapid synthesis, crystal structure and 3.3 microseconds long excited-state lifetime of Pd1Ag28 nanocluster

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Doping foreign atom(s) in metal nanoclusters is an effective strategy to engineer the properties and functionalities of metal nanoclusters. However, until now, to dope Pd atom into Ag nanoclusters remains a huge challenge. Here we develop a one-step rapid method to synthesize the Pd-doped Ag nanocluster with high yield. The prepared Pd1Ag28 nanocluster was characterized by mass spectroscopy, X-ray photoelectron spectroscopy, X-ray crystallography, fluorescence spectroscopy, ultraviolet–visible absorption spectroscopy and transient absorption spectroscopy. The nanocluster exhibits a perfect face-centered cubic (FCC) kernel structure with a tetrahedron-like shell. Of note, Pd1Ag28 nanocluster had an unexpectedly long excited-state lifetime of 3.3 microseconds, which is the longest excited-state lifetime for Ag-based nanoclusters so far. Meanwhile, the excellent near-infrared luminescence indicated the nanocluster has the potential in fluorescent bio-imaging. Besides, it was revealed that Pd1Ag28 nanocluster could be transformed into Au1Ag28 nanocluster via ion exchange reaction of AuPPh3Cl with Pd1Ag28 nanocluster. This work provides an efficient synthetic protocol of alloy nanoclusters and will contribute to study the effect of foreign atom on the properties of metal nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev.2016, 116, 10346–10413.

    CAS  Google Scholar 

  2. Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

    CAS  Google Scholar 

  3. Yao, Q. F.; Chen, T. K.; Yuan, X.; Xie, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 2018, 51, 1338–1348.

    CAS  Google Scholar 

  4. Ghosh, A.; Mohammed, O. F.; Bakr, O. M. Atomic-level doping of metal clusters. Acc. Chem. Res. 2018, 51, 3094–3103.

    CAS  Google Scholar 

  5. Kang, X.; Chong, H. B.; Zhu, M. Z. Au25(SR)18: The captain of the great nanocluster ship. Nanoscale2018, 10, 10758–10834.

    CAS  Google Scholar 

  6. Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.

    CAS  Google Scholar 

  7. Tang, Q.; Hu, G. X.; Fung, V.; Jiang, D. E. Insights into interfaces, stability, electronic properties, and catalytic activities of atomically precise metal nanoclusters from first principles. Acc. Chem. Res. 2018, 51, 2793–2802.

    CAS  Google Scholar 

  8. Higaki, T.; Li, Y. W.; Zhao, S.; Li, Q.; Li, S. T.; Du, X. S.; Yang, S.; Chai, J. S.; Jin, R. C. Atomically tailored gold nanoclusters for catalytic application. Angew. Chem., Int. Ed.2019, 58, 8291–8302.

    CAS  Google Scholar 

  9. Jiang, X. Y.; Du, B. J.; Huang, Y. Y.; Zheng, J. Ultrasmall noble metal nanoparticles: Breakthroughs and biomedical implications. Nano Today2018, 21, 106–125.

    CAS  Google Scholar 

  10. Yang, H. Y.; Lei, J.; Wu, B. H.; Wang, Y.; Zhou, M.; Xia, A. D.; Zheng, L. S.; Zheng, N. F. Crystal structure of a luminescent thiolated Ag nanocluster with an octahedral Ag64+ core. Chem. Commun.2013, 49, 300–302.

    CAS  Google Scholar 

  11. Yang, H. Y.; Wang, Y.; Zheng, N. F. Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures. Nanoscale2013, 5, 2674–2677.

    CAS  Google Scholar 

  12. Conn, B. E.; Atnagulov, A.; Yoon, B.; Barnett, R. N.; Landman, U.; Bigioni, T. P. Confirmation of a de novo structure prediction for an atomically precise monolayer-coated silver nanoparticle. Sci. Adv.2016, 2, e1601609.

    Google Scholar 

  13. Liu, C.; Li, T.; Abroshan, H.; Li, Z. M.; Zhang, C.; Kim, H. J.; Li, G.; Jin, R. C. Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nat. Commun.2018, 9, 744.

    Google Scholar 

  14. Lin, X. Z.; Liu, C.; Fu, X. M.; Huang, J. H. Cu2+-induced structural isomers: Effect of foreign metal ions on the structure and properties of silver nanoclusters. Chem. Asian J. 2019, 14, 972–976.

    CAS  Google Scholar 

  15. Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]−: The “golden” silver nanoparticle. J. Am. Chem. Soc.2015, 137, 11578–11581.

    CAS  Google Scholar 

  16. AbdulHalim, L. G.; Bootharaju, M. S.; Tang, Q.; Del Gobbo, S.; AbdulHalim, R. G.; Eddaoudi, M.; Jiang, D. E.; Bakr, O. M. Ag29(BDT)12(TPP)4: A tetravalent nanocluster. J. Am. Chem. Soc.2015, 137, 11970–11975.

    CAS  Google Scholar 

  17. Tian, F.; Chen, R. Pd-mediated synthesis of Ag33 chiral nanocluster with core-shell structure in T point group. J. Am. Chem. Soc.2019, 141, 7107–7114.

    CAS  Google Scholar 

  18. Chai, J. S.; Yang, S.; Lv, Y.; Chen, T.; Wang, S. X.; Yu, H. Z.; Zhu, M. Z. A unique pair: Ag40 and Ag46 nanoclusters with the same surface but different cores for structure–property correlation. J. Am. Chem. Soc.2018, 140, 15582–15585.

    CAS  Google Scholar 

  19. Bodiuzzaman, M.; Ghosh, A.; Sugi, K. S.; Nag, A.; Khatun, E.; Varghese, B.; Paramasivam, G.; Antharjanam, S.; Natarajan, G.; Pradeep, T. Camouflaging structural diversity: Co-crystallization of two different nanoparticles having different cores but the same shell. Angew. Chem., Int. Ed.2019, 58, 189–194.

    CAS  Google Scholar 

  20. Desireddy, A.; Conn, B. E.; Guo, J. S.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature2013, 501, 399–402.

    CAS  Google Scholar 

  21. Zou, X. J.; Jin, S.; Du, W. J.; Li, Y. F.; Li, P.; Wang, S. X.; Zhu, M. Z. Multi-ligand-directed synthesis of chiral silver nanoclusters. Nanoscale2017, 9, 16800–16805.

    CAS  Google Scholar 

  22. Du, W. J.; Jin, S.; Xiong, L.; Chen, M.; Zhang, J.; Zou, X. J.; Pei, Y.; Wang, S. X.; Zhu, M. Z. Ag50(Dppm)6(SR)30 and its homologue AuxAg50−x(Dppm)6(SR)30 alloy nanocluster: Seeded growth, structure determination, and differences in properties. J. Am. Chem. Soc.2017, 139, 1618–1624.

    CAS  Google Scholar 

  23. Alhilaly, M. J.; Bootharaju, M. S.; Joshi, C. P.; Besong, T. M.; Emwas, A. H.; Juarez-Mosqueda, R.; Kaappa, S.; Malola, S.; Adil, K.; Shkurenko, A. et al. [Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, total structure, and optical properties of a large box-shaped silver nanocluster. J. Am. Chem. Soc.2016, 138, 14727–14732.

    CAS  Google Scholar 

  24. Yang, H. Y.; Yan, J. Z.; Wang, Y.; Deng, G. C.; Su, H. F.; Zhao, X. J.; Xu, C. F.; Teo, B. K.; Zheng, N. F. From racemic metal nanoparticles to optically pure enantiomers in one pot. J. Am. Chem. Soc.2017, 139, 16113–16116.

    CAS  Google Scholar 

  25. Yang, H. Y.; Wang, Y.; Chen, X.; Zhao, X. J.; Gu, L.; Huang, H. Q.; Yan, J. Z.; Xu, C. F.; Li, G.; Wu, J. C. et al. Plasmonic twinned silver nanoparticles with molecular precision. Nat. Commun.2016, 7, 12809.

    CAS  Google Scholar 

  26. Ren, L. T.; Yuan, P.; Su, H. F.; Malola, S.; Lin, S. C.; Tang, Z. C.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Bulky surface ligands promote surface reactivities of [Ag141X12(S-Adm)40]3+ (X = Cl, Br, I) nanoclusters: Models for multiple-twinned nanoparticles. J. Am. Chem. Soc.2017, 139, 13288–13291.

    CAS  Google Scholar 

  27. Song, Y. B.; Lambright, K.; Zhou, M.; Kirschbaum, K.; Xiang, J.; Xia, A. D.; Zhu, M. Z.; Jin, R. C. Large-scale synthesis, crystal structure, and optical properties of the Ag146Br2(SR)80 nanocluster. ACS Nano2018, 12, 9318–9325.

    CAS  Google Scholar 

  28. Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy clusters: Precise synthesis and mixing effects. Acc. Chem. Res. 2018, 51, 3114–3124.

    CAS  Google Scholar 

  29. Ferrari, P.; Vanbuel, J.; Janssens, E.; Lievens, P. Tuning the reactivity of small metal clusters by heteroatom doping. Acc. Chem. Res. 2018, 51, 3174–3182.

    CAS  Google Scholar 

  30. Wang, S. X.; Li, Q.; Kang, X.; Zhu, M. Z. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. Acc. Chem. Res. 2018, 51, 2784–2792.

    CAS  Google Scholar 

  31. Taylor, M. G.; Mpourmpakis, G. Rethinking heterometal doping in ligand-protected metal nanoclusters. J. Phys. Chem. Lett. 2018, 9, 6773–6778.

    CAS  Google Scholar 

  32. Sharma, S.; Chakrahari, K. K.; Saillard, J. Y.; Liu, C. W. Structurally precise dichalcogenolate-protected copper and silver superatomic nanoclusters and their alloys. Acc. Chem. Res. 2018, 51, 2475–2483.

    CAS  Google Scholar 

  33. Gan, Z. B.; Xia, N.; Wu, Z. K. Discovery, mechanism, and application of antigalvanic reaction. Acc. Chem. Res. 2018, 51, 2774–2783.

    CAS  Google Scholar 

  34. Jin, R. C.; Nobusada, K. Doping and alloying in atomically precise gold nanoparticles. Nano Res. 2014, 7, 285–300.

    CAS  Google Scholar 

  35. Liu, C.; Ren, X. Q.; Lin, F.; Fu, X. M.; Lin, X. Z.; Li, T.; Sun, K. J.; Huang, J. H. Structure of the Au23−xAgx(S-Adm)15 nanocluster and its application for photocatalytic degradation of organic pollutants. Angew. Chem., Int. Ed.2019, 58, 11335–11339.

    CAS  Google Scholar 

  36. Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18] nanocluster. Angew. Chem., Int. Ed.2016, 55, 922–926.

    CAS  Google Scholar 

  37. Udayabhaskararao, T.; Sun, Y.; Goswami, N.; Pal, S. K.; Balasubramanian, K.; Pradeep, T. Ag7Au6: A 13-atom alloy quantum cluster. Angew. Chem., Int. Ed.2012, 51, 2155–2159.

    CAS  Google Scholar 

  38. Jin, S.; Xu, F. Q.; Du, W. J.; Kang, X.; Chen, S.; Zhang, J.; Li, X. W.; Hu, D. Q.; Wang, S. X.; Zhu, M. Z. Isomerism in Au-Ag alloy nanoclusters: Structure determination and enantioseparation of [Au9Ag12(SR)4(Dppm)6X6]3+. Inorg. Chem. 2018, 57, 5114–5119.

    CAS  Google Scholar 

  39. Liu, X.; Yuan, J. Y.; Yao, C. H.; Chen, J. S.; Li, L. L.; Bao, X. L.; Yang, J. L.; Wu, Z. K. Crystal and solution photoluminescence of MAg24(SR)18 (M = Ag/Pd/Pt/Au) nanoclusters and some implications for the photoluminescence mechanisms. J. Phys. Chem. C2017, 121, 13848–13853.

    CAS  Google Scholar 

  40. Bootharaju, M. S.; Sinatra, L.; Bakr, O. M. Distinct metal-exchange pathways of doped Ag25 nanoclusters. Nanoscale2016, 8, 17333–17339.

    CAS  Google Scholar 

  41. uarez-Mosqueda, R.; Malola, S.; Häkkinen, H. Stability, electronic structure, and optical properties of protected gold-doped silver Ag29−xAux (x = 0-5) nanoclusters. Phys. Chem. Chem. Phys. 2017, 19, 13868–13874.

    Google Scholar 

  42. Soldan, G.; Aljuhani, M. A.; Bootharaju, M. S.; AbdulHalim, L. G.; Parida, M. R.; Emwas, A. H.; Mohammed, O. F.; Bakr, O. M. Gold doping of silver nanoclusters: A 26-fold enhancement in the luminescence quantum yield. Angew. Chem., Int. Ed.2016, 55, 5749–5753.

    CAS  Google Scholar 

  43. Jin, S.; Zou, X. J.; Xiong, L.; Du, W. J.; Wang, S. X.; Pei, Y.; Zhu, M. Z. Bonding of two 8-electron superatom clusters. Angew. Chem., Int. Ed.2018, 57, 16768–16772.

    CAS  Google Scholar 

  44. Yang, H. Y.; Wang, Y.; Huang, H. Q.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. F. All-thiol-stabilized Ag44 and Au12Ag332 nanoparticles with single-crystal structures. Nat. Commun.2013, 4, 2422.

  45. Yao, Q. F.; Feng, Y.; Fung, V.; Yu, Y.; Jiang, D. E.; Yang, J.; Xie, J. P. Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction. Nat. Commun.2017, 8, 1555.

  46. Huang, L.; Yan, J. Z.; Ren, L. T.; Teo, B. K.; Zheng, N. F. Peculiar holes on checkerboard facets of a trigonal prismatic Au9Ag36(SPhCl2)27(PPh3)6 cluster caused by steric hindrance and magic electron count. Dalton Trans. 2017, 46, 1757–1760.

    CAS  Google Scholar 

  47. Wang, S. X.; Jin, S.; Yang, S.; Chen, S.; Song, Y. B.; Zhang, J.; Zhu, M. Z. Total structure determination of surface doping [Ag46Au24(SR)32](BPh4)2 nanocluster and its structure-related catalytic property. Sci. Adv.2015, 1, e1500441.

  48. Yan, J. Z.; Su, H. F.; Yang, H. Y.; Malola, S.; Lin, S. C.; Häkkinen, H.; Zheng, N. F. Total structure and electronic structure analysis of doped thiolated silver [MAg24(SR)18]2− (M = Pd, Pt) clusters. J. Am. Chem. Soc.2015, 137, 11880–11883.

    CAS  Google Scholar 

  49. He, L. Z.; Yuan, J. Y.; Xia, N.; Liao, L. W.; Liu, X.; Gan, Z. B.; Wang, C. M.; Yang, J. L.; Wu, Z. K. Kernel tuning and nonuniform influence on optical and electrochemical gaps of bimetal nanoclusters. J. Am. Chem. Soc.2018, 140, 3487–3490.

    CAS  Google Scholar 

  50. Kang, X.; Zhou, M.; Wang, S. X.; Jin, S.; Sun, G. D.; Zhu, M. Z.; Jin, R. C. The tetrahedral structure and luminescence properties of bi-metallic Pt1Ag28(SR)18(PPh3)4 nanocluster. Chem. Sci. 2017, 8, 2581–2587.

    CAS  Google Scholar 

  51. Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Shkurenko, A.; El-Zohry, A. M.; Mohammed, O. F.; Eddaoudi, M.; Bakr, O. M.; Cavallo, L.; Basset, J. M. Tailoring the crystal structure of nanoclusters unveiled high photoluminescence via ion pairing. Chem. Mater. 2018, 30, 2719–2725.

    CAS  Google Scholar 

  52. Lin, X. Z.; Liu, C.; Sun, K. J.; Wu, R. A.; Fu, X. M.; Huang, J. H. Structural isomer and high-yield of Pt1Ag28 nanocluster via one-pot chemical wet method. Nano Res. 2019, 12, 309–314.

    CAS  Google Scholar 

  53. Barik, S. K.; Chiu, T. H.; Liu, Y. C.; Chiang, M. H.; Gam, F.; Chantrenne, I.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Mono- and hexa-palladium doped silver nanoclusters stabilized by dithiolates. Nanoscale2019, 11, 14581–14586.

    CAS  Google Scholar 

  54. Yao, Q. F.; Yuan, X.; Chen, T. K.; Leong, D. T.; Xie, J. P. Engineering functional metal materials at the atomic level. Adv. Mater. 2018, 30, 1802751.

    Google Scholar 

  55. Du, X. L.; Wang, X. L.; Li, Y. H.; Wang, Y. L.; Zhao, J. J.; Fang, L. J.; Zheng, L. R.; Tong, H.; Yang, H. G. Isolation of single pt atoms in a silver cluster: Forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. Chem. Commun.2017, 53, 9402–9405.

    CAS  Google Scholar 

  56. Chen, Y. S.; Choi, H.; Kamat, P. V. Metal-cluster-sensitized solar cells. A new class of thiolated gold sensitizers delivering efficiency greater than 2%. J. Am. Chem. Soc.2013, 135, 8822–8825.

    CAS  Google Scholar 

  57. Qian, H. F.; Zhu, M. Z.; Wu, Z. K.; Jin, R. C. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470–1479.

    CAS  Google Scholar 

  58. Higaki, T.; Liu, C.; Zhou, M.; Luo, T. Y.; Rosi, N. L.; Jin, R. C. Tailoring the structure of 58-electron gold nanoclusters: Au103S2(S-NAP)41 and its implications. J. Am. Chem. Soc.2017, 139, 9994–10001.

    CAS  Google Scholar 

  59. Li, Q.; Zhou, M.; So, W. Y.; Huang, J. C.; Li, M. X.; Kauffman, D. R.; Cotlet, M.; Higaki, T.; Peteanu, L. A.; Shao, Z. Z. et al. A monocuboctahedral series of gold nanoclusters: Photoluminescence origin, large enhancement, wide tunability, and structure-property correlation. J. Am. Chem. Soc.2019, 141, 5314–5325.

    CAS  Google Scholar 

  60. Zhou, M.; Yao, C. H.; Sfeir, M. Y.; Higaki, T.; Wu, Z. K.; Jin, R. C. Excited-state behaviors of M1Au24(SR)18 nanoclusters: The number of valence electrons matters. J. Phys. Chem. C2018, 122, 13435–13442.

    CAS  Google Scholar 

  61. Zhou, M.; Higaki, T.; Hu, G. X.; Sfeir, M. Y.; Chen, Y. X.; Jiang, D. E.; Jin, R. C. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science2019, 364, 279–282.

    CAS  Google Scholar 

  62. Aly, S. M.; AbdulHalim, L. G.; Besong, T. M. D.; Soldan, G.; Bakr, O. M.; Mohammed, O. F. Ultrafast static and diffusion-controlled electron transfer at Ag29 nanocluster/molecular acceptor interfaces. Nanoscale2016, 8, 5412–5416.

    CAS  Google Scholar 

  63. Pelton, M.; Tang, Y.; Bakr, O. M.; Stellacci, F. Long-lived chargeseparated states in ligand-stabilized silver clusters. J. Am. Chem. Soc.2012, 134, 11856–11859.

    CAS  Google Scholar 

  64. Chen, T. K; Yao, Q. F.; Nasaruddin, R. R.; Xie, J. P. Electrospray ionization mass spectrometry: A powerful platform for noble-metal nanocluster analysis. Angew. Chem., Int. Ed.2019, 58, 11967–11977.

    CAS  Google Scholar 

  65. Chen, T. K.; Fung, V.; Yao, Q. F.; Luo, Z. T.; Jiang, D. E.; Xie, J. P. Synthesis of water-soluble [Au25(SR)18] using a stoichiometric amount of NaBh4. J. Am. Chem. Soc.2018, 140, 11370–11377.

    CAS  Google Scholar 

  66. Kang, X.; Huang, L.; Liu, W.; Xiong, L.; Pei, Y.; Sun, Z. H.; Wang, S. X.; Wei, S. Q.; Zhu, M. Z. Reversible nanocluster structure transformation between face-centered cubic and icosahedral isomers. Chem. Sci. 2019, 10, 8685–8693.

    CAS  Google Scholar 

  67. Kang, X.; Wei, X.; Jin, S.; Yuan, Q. Q.; Luan, X. Q.; Pei, Y.; Wang, S. X.; Zhu, M. Z.; Jin, R. C. Rational construction of a library of M29 nanoclusters from monometallic to tetrametallic. Proc. Natl. Acad. Sci. USA2019, 116, 18834–18840.

    CAS  Google Scholar 

  68. Zhang, H. K.; Zhao, Z.; McGonigal, P. R.; Ye, R. Q.; Liu, S. J.; Lam, J. W. Y.; Kwok, R. T. K.; Yuan, W. Z.; Xie, J. P.; Rogach, A. L. et al. Clusterization-triggered emission: Uncommon luminescence from common materials. Mater. Today, in press, DOI: 10.1016/j.mattod.2019.08.010.

    Google Scholar 

  69. Wu, Z. K.; Jin, R. C. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568–2573.

    CAS  Google Scholar 

  70. Goswami, N.; Yao, Q. F.; Luo, Z. T.; Li, J. G.; Chen, T. K.; Xie, J. P. Luminescent metal nanoclusters with aggregation-induced emission. J. Phys. Chem. Lett. 2016, 7, 962–975.

    CAS  Google Scholar 

  71. Chen, Y. T.; Yang, T. Q.; Pan, H. F.; Yuan, Y. F.; Chen, L.; Liu, M. W.; Zhang, K.; Zhang, S. J.; Wu, P.; Xu, J. H. Photoemission mechanism of water-soluble silver nanoclusters: Ligand-to-metal-metal charge transfer vs. strong coupling between surface plasmon and emitters. J. Am. Chem. Soc.2014, 136, 1686–1689.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (No. 21601178).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Liu or Jiahui Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Cong, H., Sun, K. et al. One-step rapid synthesis, crystal structure and 3.3 microseconds long excited-state lifetime of Pd1Ag28 nanocluster. Nano Res. 13, 366–372 (2020). https://doi.org/10.1007/s12274-020-2615-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2615-1

Keywords

Navigation