Skip to main content
Log in

Layer-by-layer alloying of NIR-II emissive M50 (Au/Ag/Cu) superatomic nanocluster

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

This article has been updated

Abstract

The intermetallic synergy plays a critical role in exploring the chemical-physical properties of metal nanoclusters. However, the controlled doping or layer-by-layer alloying of atom-precise metal nanoclusters (NCs) has long been a challenging pursuit. In this work, two novel alloy nanoclusters [PPh4]4[Ag32Cu18(PFBT)36] ((AgCu)50) and [PPh4]4[Au12Ag20Cu18(PFBT)36] (Au12(AgCu)38), where PFBT is pentafluorobenzenethiolate, with shell-by-shell configuration of M12@Ag20@Cu18(PFBT)36 (M = Ag/Au) were synthesized by a facile one-pot co-reduction method. Notably, a fingerprint library of [Ag50−xCux(PFBT)36]4− (x = 0 to 50) from Ag50 to Cu50 has been successfully established as revealed by electrospray ionization mass spectrometry. Single-crystal X-ray diffraction analysis of trimetallic Au12(AgCu)38 confirmed the layer-by-layer alloying under reducing conditions. What is more, (AgCu)50 and Au12(AgCu)38 both show broad photoluminescence (PL) peak in the second near-infrared (NIR-II) window, and the Au doping in the innermost shell considerably enhances the photoluminescence intensity. This work not only offers an insight in the process of metal cluster alloying but also provides a platform to study the doping-directed PL properties in the multimetallic cluster system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 29 March 2022

    There are missing supplementary materials on original upload.

References

  1. Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

    Article  CAS  Google Scholar 

  2. Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

    Article  CAS  Google Scholar 

  3. Jin, Y.; Zhang, C.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem. Soc. Rev. 2021, 50, 2297–2319.

    Article  CAS  Google Scholar 

  4. Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

    Article  Google Scholar 

  5. Xiao, Y.; Wu, Z. N.; Yao, Q. F.; Xie, J. P. Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate 2021, 2, 114–132.

    Article  Google Scholar 

  6. AbdulHalim, L. G.; Bootharaju, M. S.; Tang, Q.; Del Gobbo, S.; AbdulHalim, R. G.; Eddaoudi, M.; Jiang, D. E.; Bakr, O. M. Ag29(BDT)12(TPP)4: A tetravalent nanocluster. J. Am. Chem. Soc. 2015, 137, 11970–11975.

    Article  CAS  Google Scholar 

  7. Tian, S. B.; Cao, Y. T.; Chen, T. K.; Zang, S. Q.; Xie, J. P. Ligand-protected atomically precise gold nanoclusters as model catalysts for oxidation reactions. Chem. Commun. 2020, 56, 1163–1174.

    Article  CAS  Google Scholar 

  8. Dass, A.; Theivendran, S.; Nimmala, P. R.; Kumara, C.; Jupally, V. R.; Fortunelli, A.; Sementa, L.; Barcaro, G.; Zuo, X. B.; Noll, B. C. Au133(SPh-tBu)52 nanomolecules: X-ray crystallography, optical, electrochemical, and theoretical analysis. J. Am. Chem. Soc. 2015, 137, 4610–4613.

    Article  CAS  Google Scholar 

  9. Han, Z.; Zhao, X. L.; Peng, P.; Li, S.; Zhang, C.; Cao, M.; Li, K.; Wang, Z. Y.; Zang, S. Q. Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters. Nano Res. 2020, 13, 3248–3252.

    Article  CAS  Google Scholar 

  10. Huang, R. W.; Wei, Y. S.; Dong, X. Y.; Wu, X. H.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697.

    Article  CAS  Google Scholar 

  11. Jia, T. T.; Yang, G.; Mo, S. J.; Wang, Z. Y.; Li, B. J.; Ma, W.; Guo, Y. X.; Chen, X. Y.; Zhao, X. L.; Liu, J. Q. et al. Atomically precise gold-levonorgestrel nanocluster as a radiosensitizer for enhanced cancer therapy. ACS Nano 2019, 13, 8320–8328.

    Article  CAS  Google Scholar 

  12. Krishnadas, K. R.; Ghosh, A.; Baksi, A.; Chakraborty, I.; Natarajan, G.; Pradeep, T. Intercluster reactions between Au25(SR)18 and Ag44(SR)30. J. Am. Chem. Soc. 2016, 138, 140–148.

    Article  CAS  Google Scholar 

  13. Krishnadas, K. R.; Sementa, L.; Medves, M.; Fortunelli, A.; Stener, M.; Furstenberg, A.; Longhi, G.; Bürgi, T. Chiral functionalization of an atomically precise noble metal cluster: Insights into the origin of chirality and photoluminescence. ACS Nano 2020, 14, 9687–9700.

    Article  CAS  Google Scholar 

  14. Li, G. J.; Hu, W. G.; Sun, Y. N.; Xu, J. Y.; Cai, X.; Cheng, X. L.; Zhang, Y. Y.; Tang, A. C.; Liu, X.; Chen, M. Y. et al. Reactivity and lability modulated by a valence electron moving in and out of 25-atom gold nanoclusters. Angew. Chem., Int. Ed. 2020, 59, 21135–21142.

    Article  CAS  Google Scholar 

  15. Li, G.; Lei, Z.; Wang, Q. M. Luminescent molecular Ag-S nanocluster [Ag62S13(SBut)32](BF4)4. J. Am. Chem. Soc. 2010, 132, 17678–17679.

    Article  CAS  Google Scholar 

  16. Wang, Z.; Liu, J. W.; Su, H. F.; Zhao, Q. Q.; Kurmoo, M.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. Chalcogens-induced Ag6Z4@Ag36 (Z = S or Se) core-shell nanoclusters: Enlarged tetrahedral core and homochiral crystallization. J. Am. Chem. Soc. 2019, 141, 17884–17890.

    Article  CAS  Google Scholar 

  17. Wang, Z. Y.; Wang, M. Q.; Li, Y. L.; Luo, P.; Jia, T. T.; Huang, R. W.; Zang, S. Q.; Mak, T. C. W. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069–1076.

    Article  CAS  Google Scholar 

  18. Zhang, S. S.; Li, Y. Z.; Feng, L.; Xue, Q. W.; Gao, Z. Y.; Tung, C.; Sun, D. Octagold selenido nanoclusters: Significance of surface ligands on tuning geometric and electronic structure of Au8Se2 kernel. Nano Res. 2021, 14, 3343–3351.

    Article  CAS  Google Scholar 

  19. Kenzler, S.; Schrenk, C.; Schnepf, A. Au108S24(PPh3)16: A highly symmetric nanoscale gold cluster confirms the general concept of metalloid clusters. Angew. Chem., Int. Ed. 2017, 56, 393–396.

    Article  CAS  Google Scholar 

  20. Le Guével, X.; Spies, C.; Daum, N.; Jung, G.; Schneider, M. Highly fluorescent silver nanoclusters stabilized by glutathione: A promising fluorescent label for bioimaging. Nano Res. 2012, 5, 379–387.

    Article  CAS  Google Scholar 

  21. Yao, Q. F.; Chen, T. K.; Yuan, X.; Xie, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 2018, 51, 1338–1348.

    Article  CAS  Google Scholar 

  22. Zhuang, S. L.; Chen, D.; Liao, L. W.; Zhao, Y.; Xia, N.; Zhang, W. H.; Wang, C. M.; Yang, J.; Wu, Z. K. Hard-sphere random close-packed Au47Cd2(TBBT)31 nanoclusters with a faradaic efficiency of up to 96% for electrocatalytic CO2 reduction to CO. Angew. Chem., Int. Ed. 2020, 59, 3073–3077.

    Article  CAS  Google Scholar 

  23. Bootharaju, M. S.; Chang, H.; Deng, G. C.; Malola, S.; Baek, W.; Häkkinen, H.; Zheng, N. F.; Hyeon, T. Cd12Ag32(SePh)36: Non-noble metal doped silver nanoclusters. J. Am. Chem. Soc. 2019, 141, 8422–8425.

    Article  CAS  Google Scholar 

  24. Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18] nanocluster. Angew. Chem., Int. Ed. 2016, 55, 922–926.

    Article  CAS  Google Scholar 

  25. Li, Y. W.; Cowan, M. J.; Zhou, M.; Luo, T. Y.; Song, Y. B.; Wang, H.; Rosi, N. L.; Mpourmpakis, G.; Jin, R. C. Atom-by-atom evolution of the same ligand-protected Au21, Au22, Au22Cd1, and Au24 nanocluster series. J. Am. Chem. Soc. 2020, 142, 20426–20433.

    Article  CAS  Google Scholar 

  26. Song, Y. B.; Li, Y. W.; Li, H.; Ke, F.; Xiang, J.; Zhou, C. J.; Li, P.; Zhu, M. Z.; Jin, R. C. Atomically resolved Au52Cu72(SR)55 nanoalloy reveals Marks decahedron truncation and Penrose tiling surface. Nat. Commun. 2020, 11, 478.

    Article  CAS  Google Scholar 

  27. Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Harb, M.; Maity, N.; Shkurenko, A.; Parida, M. R.; Hedhili, M. N.; Eddaoudi, M.; Mohammed, O. F. et al. Doping-induced anisotropic self-assembly of silver icosahedra in [Pt2Ag23Cl7(PPh3)10] nanoclusters. J. Am. Chem. Soc. 2017, 139, 1053–1056.

    Article  CAS  Google Scholar 

  28. Kang, X.; Zhu, M. Z. Transformation of atomically precise nanoclusters by ligand-exchange. Chem. Mater. 2019, 31, 9939–9969.

    Article  CAS  Google Scholar 

  29. Xi, X. J.; Yang, J. S.; Wang, J. Y.; Dong, X. Y.; Zang, S. Q. New stable isomorphous Ag34 and Ag33Au nanoclusters with an open shell electronic structure. Nanoscale 2018, 10, 21013–21018.

    Article  CAS  Google Scholar 

  30. Yan, J. Z.; Su, H. F.; Yang, H. Y.; Malola, S.; Lin, S. C.; Häkkinen, H.; Zheng, N. F. Total structure and electronic structure analysis of doped thiolated silver [MAg24(SR)18]2− (M = Pd, Pt) clusters. J. Am. Chem. Soc. 2015, 137, 11880–11883.

    Article  CAS  Google Scholar 

  31. Chang, W. T.; Sharma, S.; Liao, J. H.; Kahlal, S.; Liu, Y. C.; Chiang, M. H.; Saillard, J. Y.; Liu, C. W. Heteroatom-doping increases cluster nuclearity: From an [Ag20] to an [Au3Ag18] core. Chem. -Eur. J. 2018, 24, 14352–14357.

    Article  CAS  Google Scholar 

  32. Khatun, E.; Chakraborty, P.; Jacob, B. R.; Paramasivam, G.; Bodiuzzaman, M.; Dar, W. A.; Pradeep, T. Intercluster reactions resulting in silver-rich trimetallic nanoclusters. Chem. Mater. 2019, 32, 611–619.

    Article  CAS  Google Scholar 

  33. Wan, X. K.; Cheng, X. L.; Tang, Q.; Han, Y. Z.; Hu, G. X.; Jiang, D. E.; Wang, Q. M. Atomically precise bimetallic Au19Cu30 nanocluster with an icosidodecahedral Cu30 shell and an alkynyl-Cu interface. J. Am. Chem. Soc. 2017, 139, 9451–9454.

    Article  CAS  Google Scholar 

  34. Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]: The “golden” silver nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578–11581.

    Article  CAS  Google Scholar 

  35. Li, Y. L.; Wang, J.; Luo, P.; Ma, X. H.; Dong, X. Y.; Wang, Z. Y.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Cu14 cluster with partial Cu(0) character: Difference in electronic structure from isostructural silver analog. Adv. Sci. 2019, 6, 1900833.

    Article  CAS  Google Scholar 

  36. Guan, Z. J.; Zeng, J. L.; Yuan, S. F.; Hu, F.; Lin, Y. M.; Wang, Q. M. Au57Ag53(C=CPh)40Br12: A large nanocluster with C1 symmetry. Angew. Chem., Int. Ed. 2018, 57, 5703–5707.

    Article  CAS  Google Scholar 

  37. Zhou, M.; Zhong, J.; Wang, S. X.; Guo, Q. J.; Zhu, M. Z.; Pei, Y.; Xia, A. D. Ultrafast relaxation dynamics of luminescent rod-shaped, silver-doped AgxAu25−x cluterrs. J. Phys. Chem. C 2015, 119, 18790–18797.

    Article  CAS  Google Scholar 

  38. Zou, X. J.; Li, Y. F.; Jin, S.; Kang, X.; Wei, X.; Wang, S. X.; Meng, X. M.; Zhu, M. Z. Doping copper atoms into the nanocluster kernel: Total structure determination of [Cu30Ag61(SAdm)38S3](BPh4). J. Phys. Chem. Lett. 2020, 11, 2272–2276.

    Article  CAS  Google Scholar 

  39. Kang, X.; Wei, X.; Jin, S.; Yuan, Q. Q.; Luan, X. Q.; Pei, Y.; Wang, S. X.; Zhu, M. Z.; Jin, R. C. Rational construction of a library of M29 nanoclusters from monometallic to tetrametallic. Proc. Natl. Acad. Sci. USA 2019, 116, 18834–18840.

    Article  CAS  Google Scholar 

  40. Yang, H. Y.; Wang, Y.; Yan, J. Z.; Chen, X.; Zhang, X.; Häkkinen, H.; Zheng, N. F. Structural evolution of atomically precise thiolated bimetallic [Au12+nCu32(SR)30+n)4− (n = 0, 2, 4, 6) nanoclusters. J. Am. Chem. Soc. 2014, 136, 7197–7200.

    Article  CAS  Google Scholar 

  41. Yang, H. Y.; Wang, Y.; Huang, H. Q.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. F. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 92061201, 21825106, and 21801228), the Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province (No. 19IRTSTHN022) and Zhengzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao-Yang Wang or Shuang-Quan Zang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, XH., Jia, JT., Luo, P. et al. Layer-by-layer alloying of NIR-II emissive M50 (Au/Ag/Cu) superatomic nanocluster. Nano Res. 15, 5569–5574 (2022). https://doi.org/10.1007/s12274-022-4162-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4162-4

Keywords

Navigation