Skip to main content
Log in

Radioiodinated tyrosine based carbon dots with efficient renal clearance for single photon emission computed tomography of tumor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoparticles with effective tumor accumulation and efficient renal clearance have attracted significant interests for clinical applications. We prepared 2.5 nm tyrosine based carbon dots (TCDs) with phenolic hydroxyl groups on the surface for directly 125I labeling. The 125I labeled polyethylene glycol (PEG) functionalized TCDs (125I-TCDPEGs) showed excellent radiochemical stability both in vitro and in vivo. Due to the enhanced permeability and retention effect, these 125I-TCDPEGs demonstrated a tumor accumulation around 4%–5% of the injected dose per gram (ID/g) for U87MG, 4T1, HepG2 and MCF7 tumor-bearing mice at 1 h post-injection. Meanwhile, the 125I-TCDPEGs also could be fast renally excreted, with less than 0.6% ID/g left in the liver and spleen within 24 h. These radioactive carbon dots not only can be used for cellular fluorescence imaging due to their intrinsic optical property, but are also effective single photon emission computed tomography (SPECT) imaging agents for tumor. Together with their excellent biocompatibility and stability, we anticipate these 125I-TCDPEGs of great potential for early tumor diagnosis in clinic. What’s more, our TCDPEGs are also proved to be feasible carriers for other iodine isotopes such as 127I and 131I for different biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charlton, K. A sustainable future for nuclear imaging. Nat. Rev. Phys. 2019, 1, 530–532.

    Article  Google Scholar 

  2. Zeglis, B. M.; Holland, J. P.; Lebedev, A. Y.; Cantorias, M. V.; Lewis, J. S. Radiopharmaceuticals for imaging in oncology with special emphasis on positron-emitting agents In Nuclear Oncology: Pathophysiology and Clinical Applications. Strauss, H. W.; Mariani, G.; Volterrani D.; Larson S. M., Eds.; Springer: New York, 2013; pp 35–78.

    Chapter  Google Scholar 

  3. Dunphy, M. P.; Lewis, J. S. Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J. Nucl. Med. 2009, 50 Suppl 1, 106S–121S.

    Article  CAS  Google Scholar 

  4. Park, S. M.; Aalipour, A.; Vermesh, O.; Yu, J. H.; Gambhir, S. S. Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2017, 2, 17014.

    Article  CAS  Google Scholar 

  5. Sun, X. L.; Cai, W. B.; Chen, X. Y. Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Acc. Chem. Res. 2015, 48, 286–294.

    Article  CAS  Google Scholar 

  6. Pampaloni, M. H.; Nardo, L. PET/MRI radiotracer beyond 18F-FDG. PET Clin. 2014, 9, 345–349.

    Article  Google Scholar 

  7. Mushtaq, S.; Jeon, J.; Shaheen, A.; Jang, B. S.; Park, S. H. Critical analysis of radioiodination techniques for micro and macro organic molecules. J. Radioanal. Nucl. Chem. 2016, 309, 859–889.

    CAS  Google Scholar 

  8. Cavina, L.; van der Born, D.; Klaren, P. H. M.; Feiters, M. C.; Boerman, O. C.; Rutjes, F. P. J. T. Design of radioiodinated pharmaceuticals: Structural features affecting metabolic stability towards in vivo deiodination. Eur. J. Org. Chem. 2017, 2017, 3387–3414.

    Article  CAS  Google Scholar 

  9. Seevers, R. H.; Counsell, R. E. Radioiodination techniques for small organic molecules. Chem. Rev. 1982, 82, 575–590.

    Article  CAS  Google Scholar 

  10. Bailey, G. S. Labeling of peptides and proteins by radioiodination. In Basic Protein and Peptide Protocols. Walker, J. M., Ed.; Springer: Humana Press, 1994; pp 441–448.

    Chapter  Google Scholar 

  11. Dewanjee, M. K. Methods of radioiodination reactions with several oxidizing agents. In Radioiodination: Theory, Practice, and Biomedical Applications. Dewanjee, M. K., Ed.; Springer: Boston, MA, 1992; pp 129–218.

    Chapter  Google Scholar 

  12. Yi, X.; Xu, M. Y.; Zhou, H. L.; Xiong, S. S.; Qian, R.; Chai, Z. F.; Zhao, L.; Yang, K. Ultrasmall hyperbranched semiconducting polymer nanoparticles with different radioisotopes labeling for cancer theranostics. ACS Nano2018, 12, 9142–9151.

    Article  CAS  Google Scholar 

  13. Song, M. L.; Liu, N.; He, L.; Liu, G.; Ling, D. S.; Su, X. H.; Sun, X. L. Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy. Nano Res. 2018, 11, 2196–2808.

    Google Scholar 

  14. Yi, X.; Yang, K.; Liang, C.; Zhong, X. Y.; Ning, P.; Song, G. S.; Wang, D. L.; Ge, C. C.; Chen, C. Y.; Chai, Z. F. et al. Imaging-guided combined photothermal and radiotherapy to treat subcutaneous and metastatic tumors using iodine-131-doped copper sulfide nanoparticles. Adv. Funct. Mater. 2015, 25, 4689–4699.

    Article  CAS  Google Scholar 

  15. Phillips, E.; Penate-Medina, O.; Zanzonico, P. B.; Carvajal, R. D.; Mohan, P.; Ye, Y. P.; Humm, J.; Gönen, M.; Kalaigian, H.; Schoder, H. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 2014, 6, 260ra149.

    Article  Google Scholar 

  16. Zhou, M.; Li, J. J.; Liang, S.; Sood, A. K.; Liang, D.; Li, C. CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy. ACS Nano2015, 9, 7085–7096.

    Article  CAS  Google Scholar 

  17. Wen, L.; Chen, L.; Zheng, S. M.; Zeng, J. F.; Duan, G. X.; Wang, Y.; Wang, G. L.; Chai, Z. F.; Li, Z.; Gao, M. Y. Ultrasmall biocompatible WO3-x nanodots for multi-modality imaging and combined therapy of cancers. Adv. Mater. 2016, 28, 5072–5079.

    Article  CAS  Google Scholar 

  18. Shen, S. D.; Jiang, D. W.; Cheng, L.; Chao, Y.; Nie, K. Q.; Dong, Z. L.; Kutyreff, C. J.; Engle, J. W.; Huang, P.; Cai, W. B. et al. Renal-clearable ultrasmall coordination polymer nanodots for chelator-free 64Cu-labeling and imaging-guided enhanced radiotherapy of cancer. ACS Nano2017, 11, 9103–9111.

    Article  CAS  Google Scholar 

  19. Chen, L.; Chen, J. Y.; Qiu, S. S.; Wen, L.; Wu, Y.; Hou, Y.; Wang, Y.; Zeng, J. F.; Feng, Y.; Li, Z. et al. Biodegradable nanoagents with short biological half-life for SPECT/PAI/MRI multimodality imaging and PTT therapy of tumors. Small2018, 14, 1702700.

    Article  Google Scholar 

  20. Lu, N.; Fan, W. P.; Yi, X.; Wang, S.; Wang, Z. T.; Tian, R.; Jacobson, O.; Liu, Y. J.; Yung, B. C.; Zhang, G. F. et al. Biodegradable hollow mesoporous organosilica nanotheranostics for mild hyperthermia-induced bubble-enhanced oxygen-sensitized radiotherapy. ACS Nano2018, 12, 1580–1591.

    Article  CAS  Google Scholar 

  21. Chen, D. Q.; Zhang, G. Q.; Li, R. M.; Guan, M. R.; Wang, X. Y.; Zou, T. J.; Zhang, Y.; Wang, C. R.; Shu, C. Y.; Hong, H. et al. Biodegradable, hydrogen peroxide, and glutathione dual responsive nanoparticles for potential programmable paclitaxel release. J. Am. Chem. Soc. 2018, 140, 7373–7376.

    Article  CAS  Google Scholar 

  22. Feng, H.; Qian, Z. S. Functional carbon quantum dots: A versatile platform for chemosensing and biosensing. Chem. Rec. 2018, 18, 491–505.

    Article  CAS  Google Scholar 

  23. Roy, P.; Chen, P. C.; Periasamy, A. P.; Chen, Y. N.; Chang, H. T. Photoluminescent carbon nanodots: Synthesis, physicochemical properties and analytical applications. Mater. Today2015, 18, 447–458.

    Article  CAS  Google Scholar 

  24. Yang, S. T.; Cao, L.; Luo, P. G.; Lu, F. S.; Wang, X.; Wang, H. F.; Meziani, M. J.; Liu, Y. F.; Qi, G.; Sun, Y. P. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309.

    Article  CAS  Google Scholar 

  25. Huang, P.; Lin, J.; Wang, X. S.; Wang, Z.; Zhang, C. L.; He, M.; Wang, K.; Chen, F.; Li, Z. M.; Shen, G. X. et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 2012, 24, 5104–5110.

    Article  CAS  Google Scholar 

  26. Du, J. J.; Xu, N.; Fan, J. L.; Sun, W.; Peng, X. J. Carbon dots for in vivo bioimaging and theranostics. Small2019, 15, 1805087.

    Article  Google Scholar 

  27. Zheng, M.; Ruan, S. B.; Liu, S.; Sun, T. T.; Qu, D.; Zhao, H. F.; Xie, Z. G.; Gao, H. L.; Jing, X. B.; Sun, Z. C. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano2015, 9, 11455–11461.

    Article  CAS  Google Scholar 

  28. Opacic, T.; Paefgen, V.; Lammers, T.; Kiessling, F. Status and trends in the development of clinical diagnostic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1441.

    Article  Google Scholar 

  29. Aherne, G. W.; James, S. L.; Marks, V. The radioiodination of bleomycin using iodogen. Clin. Chim. Acta1982, 119, 341–343.

    Article  CAS  Google Scholar 

  30. Spetz, J.; Rudqvist, N.; Forssell-Aronsson, E. Biodistribution and dosimetry of free 211At, 125I–and 131I–in rats. Cancer Biother. Radiopharm. 2013, 28, 657–664.

    Article  CAS  Google Scholar 

  31. Cranley, K.; Bell, T. K. 125I thyroid intakes: Consideration of thyroid radiation dose, and air and water concentration limits. Int. J. Appl. Radiat. Isot. 1979, 30, 161–163.

    Article  CAS  Google Scholar 

  32. Zhu, A. Z.; Yoon, Y.; Liang, Z. X.; Voll, R.; Goodman, M. E.; Goodman, M. M.; Shim, H. Abstract 5227: Detection of metastatic potential by a novel small molecule F-18 PET imaging agent. Cancer Res. 2011, 71, 5227.

    Google Scholar 

  33. Foss, C. A.; Mease, R. C.; Fan, H.; Wang, Y. H.; Ravert, H. T.; Dannals, R. F.; Olszewski, R. T.; Heston, W. D.; Kozikowski, A. P.; Pomper, M. G. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: In vivo imaging in experimental models of prostate cancer. Clin. Cancer Res. 2005, 11, 4022–4028.

    Article  CAS  Google Scholar 

  34. Mankoff, D. A.; Link, J. M.; Linden, H. M.; Sundararajan, L.; Krohn, K. A. Tumor receptor imaging. J. Nucl. Med. 2008, 49 Suppl 2, 149S–163S.

    Article  CAS  Google Scholar 

  35. Tang, S. H.; Peng, C. Q.; Xu, J.; Du, B. J.; Wang, Q. X.; Vinluan III, R. D.; Yu, M.X.; Kim, M. J.; Zheng, J. Tailoring renal clearance and tumor targeting of ultrasmall metal nanoparticles with particle density. Angew. Chem., Int. Ed. 2016, 55, 16039–16043.

    Article  CAS  Google Scholar 

  36. Zhao, R. B.; Keen, L.; Kong, X. D. Clinical translation and safety regulation of nanobiomaterials In Nanobiomaterials: Classification, Fabrication and Biomedical Applications. Wang X. M.; Ramalingam M.; Kong, X. D., Eds.; Wiley Germany: Verlag, 2017; pp 459–479.

    Chapter  Google Scholar 

Download references

Acknowledgements

X. S. acknowledges the National Key Research and Development Program of China (No. 2016YFA0203600), the National Natural Science Foundation of China (Nos. 81971738 and 81571743), the Project Program of State Key Laboratory of Natural Medicines, and the China Pharmaceutical University (No. SKLNMZZRC05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolian Sun.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Material

12274_2019_2549_MOESM1_ESM.pdf

Radioiodinated tyrosine based carbon dots with efficient renal clearance for single photon emission computed tomography of tumor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Shi, Y., Guo, J. et al. Radioiodinated tyrosine based carbon dots with efficient renal clearance for single photon emission computed tomography of tumor. Nano Res. 12, 3037–3043 (2019). https://doi.org/10.1007/s12274-019-2549-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2549-7

Keywords

Navigation