Skip to main content
Log in

Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stretchable strain sensors play an increasingly important role in artificial intelligent devices. However, high-performance strain sensors have been slowly developed owing to the harsh requirement of self-powered function, long cycle life and high resolution. Here, we report a self-powered stretchable graphene-ecoflex composite strain sensor based on photo-thermoelectric (PTE) effect induced electricity. The device exhibits a high strain sensitivity of -0.056 ln(nA)/% with strains ranged from 0% to 20% under 980 nm light illumination, where the strain sensitivity can be found to increase with increasing light intensity. The strain sensor maintains outstanding dynamic stability under periodic strains ranged from 0 to 100% in 100 cycles. The sensing resolution can be as high as 0.5% with both the response and recovery time of less than 0.6 s. It can precisely monitor human joint motions and stretchable strains by implanting the device in pork.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. A. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol.2011, 6, 788–792.

    Article  CAS  Google Scholar 

  2. Rogers, J. A. Wearable electronics: Nanomesh on-skin electronics. Nat. Nanotechnol.2017, 12, 839–840.

    Article  CAS  Google Scholar 

  3. Chen, X. Y.; Wu, Y. L.; Shao, J. J.; Jiang, T.; Yu, A. R; Xu, L.; Wang, Z. L. On-skin triboelectric nanogenerator and self-powered sensor with ultrathin thickness and high stretchability. Small2017, 13, 1702929.

    Article  CAS  Google Scholar 

  4. Morin, S. A.; Shepherd, R. R.; Kwok, S. W.; Stokes, A. A.; Nemiroski, A.; Whitesides, G. M. Camouflage and display for soft machines. Science2012, 337, 828–832.

    Article  CAS  Google Scholar 

  5. Shepherd, R. F.; Ilievski, F.; Choi, W.; Morin, S. A; Stokes, A. A; Mazzeo, A. D.; Chen, X.; Wang, M.; Whitesides, G. M. Multigait soft robot. Proc. Natl. Acad. Sci. USA2011, 108, 20400–20403.

    Article  Google Scholar 

  6. Pu, X. J.; Guo, H. Y.; Chen, J.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Rye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. adv.2017, 3, el700694.

    Article  CAS  Google Scholar 

  7. Jung, S.; Kim, J. H.; Kim, J.; Choi, S.; Lee, J.; Park, I.; Hyeon, T.; Kim, D. H. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv. Mater.2014, 26, 4825–4830.

    Article  CAS  Google Scholar 

  8. Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. Astretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater.2015, 27, 7365–7371.

    Article  CAS  Google Scholar 

  9. Takei, K.; Honda, W.; Harada, S.; Arie, T.; Akita, S. Toward flexible and wearable human-interactive health-monitoring devices. Adv. Healthc. Mater.2015, 4, 487–500.

    Article  CAS  Google Scholar 

  10. Kim, S. R.; Kim, J. H.; Park, J. W. Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks. ACS Appl. Mater. Interfaces2017, 9, 26407–26416.

    Article  CAS  Google Scholar 

  11. Kim, J.; Kim, M.; Lee, M. S.; Kim, K.; Ji, S.; Kim, Y. T.; Park, J.; Na, K.; Bae, K. H.; Kim, H. K. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun.2017, 8, 14997.

  12. Wang, Y.; Wang, L.; Yang, T. T.; Li, X.; Zang, X. B.; Zhu, M.; Wang, K. L.; Wu, D. H.; Zhu, H. W. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Fund. Mater.2014, 24, 4666-4610.

    Article  CAS  Google Scholar 

  13. Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M. B.; Jeon, S.; Chung, D. Y. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol.2012, 7, 803–809.

    Article  CAS  Google Scholar 

  14. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol.2011, 6, 296–301.

    Article  CAS  Google Scholar 

  15. Wang, S. H; Mu, X. J.; Yang, Y.; Sun, C. L.; Gu, A. Y.; Wang, Z. L. Flow-driven triboelectric generator for directly powering a wireless sensor node. Adv. Mater.2015, 27, 240–248.

    Article  CAS  Google Scholar 

  16. Zhang, K. W.; Yang, Y. Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics. Nana Res.2016, 9, 974–984.

    Article  Google Scholar 

  17. Yang, Y.; Zhu, G; Zhang, H. L.; Chen, J.; Zhong, X. D.; Lin, Z. H; Su, Y. J.; Bai, P.; Wen, X. N.; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nana2013, 7, 9461–9468.

    Article  CAS  Google Scholar 

  18. Yang, Y.; Zhu, G; Zhang, H. L.; Chen, J.; Zhong, X. D.; Lin, Z. H; Su, Y. J.; Bai, P.; Wen, X. N.; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nana2013, 7, 9461–9468.

    Article  CAS  Google Scholar 

  19. Zhang, D.; Zhang, K. W.; Wang, Y. M.; Wang, Y. H.; Yang, Y. Thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive self-powered strain sensor system. Nana Energy2019, 56, 25–32.

    Article  CAS  Google Scholar 

  20. Yang, Y.; Wang, S. H; Zhang, Y.; Wang, Z. L. Pyroelectric nanogenerators for driving wireless sensors. Nana Lett.2012, 12, 6408–6413.

    Article  CAS  Google Scholar 

  21. Zhang, D.; Wang, Y. H.; Yang, Y. Design, performance, and application of thermoelectric nanogenerators. Small2019, 75, 1805241.

    Article  CAS  Google Scholar 

  22. Zhang, X. F.; Gao, W. Q.; Su, X. W.; Wang, R L.; Liu, B. S.; Wang, J. J.; Liu, H.; Sang, Y. H. Conversion of solar power to chemical energy based on carbon nanoparticle modified photo-thermoelectric generator and electrochemical water splitting system. Nana Energy2018, 48, 481–488.

    Article  CAS  Google Scholar 

  23. He, M. H; Lin, Y. J.; Chiu, C. M.; Yang, W. F.; Zhang, B. B.; Yun, D. Q.; Xie, Y N.; Lin, Z. H. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nana Energy2018, 49, 588–595.

    Article  CAS  Google Scholar 

  24. Lu, X. W.; Jiang, P.; Bao, X. H. Phonon-enhanced photothermoelectric effect in SrTi03 ultra-broadband photodetector. Nat. Commun.2019, 10, 138.

  25. Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-based electrodes. Adv. Mater.2012, 24, 5979–6004.

    Article  CAS  Google Scholar 

  26. Ye, M. H; Zhang, Z. P.; Zhao, Y.; Qu, L. T. Graphene platforms for smart energy generation and storage. Joule2018, 2, 245–268.

    Article  CAS  Google Scholar 

  27. Kim, J. Y; Grossman, J. C. High-efficiency thermoelectrics with functionalized graphene. NanoLett.2015, 15, 2830–2835.

    Article  CAS  Google Scholar 

  28. Cai, X. H.; Sushkov, A. B.; Suess, R. J.; Jadidi, M. M.; Jenkins, G S.; Nyakiti, L. O.; Myers-Ward, R. L.; Li, S. S.; Yan, J.; Gaskill, D. K. et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol.2014, 9, 814–819.

    Article  CAS  Google Scholar 

  29. Boutry, C. M.; Kaizawa, Y.; Schroeder, B. C.; Chortos, A.; Legrand, A.; Wang, Z.; Chang, J.; Fox, P.; Bao, Z. N. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron.2018, 1, 314–321.

    Article  Google Scholar 

  30. Liu, Z.; Ma, Y.; Ouyang, H.; Shi, B. J.; Li, N.; Jiang, D. J.; Xie, R; Qu, D.; Zou, Y.; Huang, Y. et al. Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Fund. Mater.2019, 29, 1807560.

    Article  CAS  Google Scholar 

  31. Cheng, X. L.; Xue, X.; Ma, Y.; Han, M. D.; Zhang, W.; Xu, Z. Y.; Zhang, H.; Zhang. H. X. Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: Simulated, in vitro and in vivo studies. Nano Energy2016, 22, 453–460.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFA0202701), the National Natural Science Foundation of China (No. 51472055), External Cooperation Program of BIC, Chinese Academy of Sciences (No. 121411KYS820150028), the 2015 Annual Beijing Talents Fund (No. 2015000021223ZK32), Qingdao National Laboratory for Marine Science and Technology (No. 2017ASKJ01), the University of Chinese Academy of Sciences (No. Y8540XX2D2), and the "thousands talents" program for the pioneer researcher and his innovation team, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to De Yang, Yuanhao Wang or Ya Yang.

Electronic supplementary material

12274_2019_2541_MOESM1_ESM.pdf

Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Song, Y., Ping, L. et al. Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing. Nano Res. 12, 2982–2987 (2019). https://doi.org/10.1007/s12274-019-2541-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2541-2

Keywords

Navigation