Skip to main content
Log in

Polydopamine and ammonium bicarbonate coated and doxorubicin loaded hollow cerium oxide nanoparticles for synergistic tumor therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of effective nanoplatforms is extremely necessary for cancer therapy. Herein, we prepared polydopamine (PDA) and ammonium bicarbonate (NH4HCO3) coated and doxorubicin (Dox) loaded hollow cerium oxide (CeO2) NPs (PDAC NPs), which showed excellent synergistic effect for photothermal therapy, chemotherapy and chemodynamic therapy. Under near infrared laser irradiation, PDA shell could absorb the incident light and convert it into heat, which could not only kill tumor cells with hyperthermia, but also trigger the decomposition of NH4HCO3 into gaseous carbon dioxide and ammonia, leading to the destroy of PDA shell. The leakage of PDA further accelerated Dox release and exposed CeO2 surface, in which Dox could enter into cell nucleus to induce chemotherapy, and CeO2 could catalyze cellular hydrogen peroxide into hydroxyl radical to present chemodynamic therapy. In fact, PDAC NPs showed an excellent therapeutic efficacy both in vitro and in vivo. This design provides a new strategy for synergistic tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin, C. Y.; Wang, S. H.; Ren, Q. Z.; Shen, X. M.; Chen, X. D.; Liu, Y. J.; Liu, S. J. Radial extracorporeal shock wave promotes the enhanced permeability and retention effect to reinforce cancer nanothermotherapeutics. Sci. Bull.2019, 64, 679–689.

    CAS  Google Scholar 

  2. Cheng, Y.; Chang, Y.; Feng, Y. L.; Jian, H.; Wu, X. Q.; Zheng, R. X.; Xu, K. Q.; Zhang, H. Y. Bismuth sulfide nanorods with retractable zinc protoporphyrin molecules for suppressing innate antioxidant defense system and strengthening phototherapeutic effects. Adv. Mater.2019, 31, 1806808.

    Google Scholar 

  3. Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun.2018, 9, 3334.

    Google Scholar 

  4. Feng, W.; Han, X. G.; Wang, R. Y.; Gao, X.; Hu, P.; Yue, W. W.; Chen, Y.; Shi, J. L. Nanocatalysts-augmented and photothermal-enhanced tumorspecific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Adv. Mater.2019, 31, 1805919.

    Google Scholar 

  5. Tang, Z. M.; Zhang, H. L.; Liu, Y. Y.; Ni, D. L.; Zhang, H.; Zhang, J. W.; Yao, Z. W.; He, M. Y.; Shi, J. L.; Bu, W. B. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater.2017, 29, 1701683.

    Google Scholar 

  6. Zhang, C.; Liu, W. L.; Bai, X. F.; Cheng, S. X.; Zhong, Z. L.; Zhang, X. Z. A hybrid nanomaterial with NIR-induced heat and associated hydroxyl radical generation for synergistic tumor therapy. Biomaterials2019, 199, 1–9.

    CAS  Google Scholar 

  7. Ding, X.; Liu, J. H.; Li, J. Q.; Wang, F.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem. Sci.2016, 7, 6695–6700.

    CAS  Google Scholar 

  8. Liu, T.; Liu, W. L.; Zhang, M. K.; Yu, W. Y.; Gao, F.; Li, C. X.; Wang, S. B.; Feng, J.; Zhang, X. Z. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano2018, 12, 12181–12192.

    CAS  Google Scholar 

  9. Ma, X. M.; Cheng, Y.; Jian, H.; Feng, Y. L.; Chang, Y.; Zheng, R. X.; Wu, X. Q.; Wang, L.; Li, X.; Zhang, H. Y. Hollow, rough, and nitric oxidereleasing cerium oxide nanoparticles for promoting multiple stages of wound healing. Adv. Healthc. Mater.2019, 8, 1900256.

    Google Scholar 

  10. Cao, F. F.; Zhang, Y.; Sun, Y. H.; Wang, Z. Z.; Zhang, L.; Huang, Y. Y.; Liu, C. Q.; Liu, Z.; Ren, J. S.; Qu, X. G. Ultrasmall nanozymes isolated within porous carbonaceous frameworks for synergistic cancer therapy: Enhanced oxidative damage and reduced energy supply. Chem. Mater.2018, 30, 7831–7839.

    CAS  Google Scholar 

  11. Kwon, H. J.; Kim, D.; Seo, K.; Kim, Y. G.; Han, S. I.; Kang, T.; Soh, M.; Hyeon, T. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson’s disease. Angew. Chem., Int. Ed.2018, 57, 9408–9412.

    CAS  Google Scholar 

  12. Vinothkumar, G.; Lalitha, A. I.; Suresh Babu, K. Cerium phosphate-cerium oxide heterogeneous composite nanozymes with enhanced peroxidase-like biomimetic activity for glucose and hydrogen peroxide sensing. Inorg. Chem.2019, 58, 349–358.

    CAS  Google Scholar 

  13. Liu, Q. Y.; Ding, Y. Y.; Yang, Y. T.; Zhang, L. Y.; Sun, L. F.; Chen, P. P.; Gao, C. Enhanced peroxidase-like activity of porphyrin functionalized ceria nanorods for sensitive and selective colorimetric detection of glucose. Mater. Sci. Eng., C2016, 59, 445–453.

    CAS  Google Scholar 

  14. Tian, Z. M.; Li, J.; Zhang, Z. Y.; Gao, W.; Zhou, X. M.; Qu, Y. Q. Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials2015, 59, 116–124.

    CAS  Google Scholar 

  15. Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun.2007, 1056–1058.

    Google Scholar 

  16. Li, Y. Y.; He, X.; Yin, J. J.; Ma, Y. H.; Zhang, P.; Li, J. Y.; Ding, Y. Y.; Zhang, J.; Zhao, Y. L.; Chai, Z. F. et al, Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem., Int. Ed.2015, 54, 1832–1835.

    CAS  Google Scholar 

  17. Yao, C.; Wang, W. X.; Wang, P. Y.; Zhao, M. Y.; Li, X. M.; Zhang, F. Nearinfrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy. Adv. Mater.2018, 30, 1704833.

    Google Scholar 

  18. Pirmohamed, T.; Dowding, J. M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A. S.; King, J. E. S.; Seal, S.; Self, W. T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun.2010, 46, 2736–2738.

    CAS  Google Scholar 

  19. Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem., Int. Ed.2009, 48, 2308–2312.

    CAS  Google Scholar 

  20. Peng, Y. F.; Chen, X. J.; Yi, G. S.; Gao, Z. Q. Mechanism of the oxidation of organic dyes in the presence of nanoceria. Chem. Commun.2011, 47, 2916–2918.

    CAS  Google Scholar 

  21. Zhong, X. Y.; Yang, K.; Dong, Z. L.; Yi, X.; Wang, Y.; Ge, C. C.; Zhao, Y. L.; Liu, Z. Polydopamine as a biocompatible multifunctional nanocarrier for combined radioisotope therapy and chemotherapy of cancer. Adv. Funct. Mater.2015, 25, 7327–7336.

    CAS  Google Scholar 

  22. Li, W. Q.; Wang, Z. G.; Hao, S. J.; He, H. Z.; Wan, Y.; Zhu, C. D.; Sun, L. P.; Cheng, G.; Zheng, S. Y. Mitochondria-targeting polydopamine nanoparticles to deliver doxorubicin for overcoming drug resistance. ACS Appl. Mater. Interfaces2017, 9, 16793–16802.

    CAS  Google Scholar 

  23. Zheng, Q. S.; Lin, T. R.; Wu, H. Y.; Guo, L. Q.; Ye, P. R.; Hao, Y. L.; Guo, Q. Q.; Jiang, J. Z.; Fu, F. F.; Chen, G. N. Mussel-inspired polydopamine coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release. Int. J. Pharm.2014, 463, 22–26.

    CAS  Google Scholar 

  24. Ding, L.; Zhu, X. B.; Wang, Y. L.; Shi, B. Y.; Ling, X.; Chen, H. J.; Nan, W. H.; Barrett, A.; Guo, Z. L.; Tao, W Intracellular fate of nanoparticles with polydopamine surface engineering and a novel strategy for exocytosisinhibiting, lysosome impairment-based cancer therapy. Nano Lett.2017, 17, 6790–6801.

    CAS  Google Scholar 

  25. Lin, L. S.; Cong, Z. X.; Cao, J. B.; Ke, K. M.; Peng, Q. L.; Gao, J. H.; Yang, H. H.; Liu, G.; Chen, X. Y. Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mrna detection and imagingguided photothermal therapy. ACS Nano2014, 8, 3876–3883.

    CAS  Google Scholar 

  26. Li, N.; Li, T. T.; Hu, C.; Lei, X. M.; Zuo, Y. P.; Han, H. Y. Targeted near-infrared fluorescent turn-on nanoprobe for activatable imaging and effective phototherapy of cancer cells. ACS Appl. Mater. Interfaces2016, 8, 15013–15023.

    CAS  Google Scholar 

  27. Liu, F. Y.; He, X. X.; Lei, Z.; Liu, L.; Zhang, J. P.; You, H. P.; Zhang, H. M.; Wang, Z. X. Facile preparation of doxorubicin-loaded upconversion@ polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy. Adv. Healthc. Mater.2015, 4, 559–568.

    Google Scholar 

  28. Zheng, X. Y.; Zhang, J. X.; Wang, J.; Qi, X. Q.; Rosenholm, J. M.; Cai, K. Y. Polydopamine coatings in confined nanopore space: Toward improved retention and release of hydrophilic cargo. J. Phys. Chem. C2015, 119, 24512–24521.

    CAS  Google Scholar 

  29. Chen, J. X.; Lei, S.; Zeng, K.; Wang, M. Z.; Asif, A.; Ge, X. W. Catalaseimprinted Fe3O4/Fe@fibrous SiO2/polydopamine nanoparticles: An integrated nanoplatform of magnetic targeting, magnetic resonance imaging, and dual-mode cancer therapy. Nano Res.2017, 10, 2351–2363.

    CAS  Google Scholar 

  30. Ding, X.; Liu, J. H.; Liu, D. P.; Li, J. Q.; Wang, F.; Li, L. J.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Multifunctional core/satellite polydopamine@Nd3+- sensitized upconversion nanocomposite: A single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy. Nano Res.2017, 10, 3434–3446.

    CAS  Google Scholar 

  31. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater.2013, 12, 991–1003.

    CAS  Google Scholar 

  32. Xia, J. Z.; Feng, G.; Xia, X. R.; Hao, L.; Wang, Z. G. NH4HCO3 gasgenerating liposomal nanoparticle for photoacoustic imaging in breast cancer. Int. J. Nanomed.2017, 12, 1803–1813.

    CAS  Google Scholar 

  33. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci.1968, 26, 62–69.

    Google Scholar 

  34. Wang, Z. H.; Fu, H. F.; Tian, Z. W.; Han, D. M.; Gu, F. B. Strong metal-support interaction in novel core-shell Au-CeO2 nanostructures induced by different pretreatment atmospheres and its influence on CO oxidation. Nanoscale2016, 8, 5865–5872.

    CAS  Google Scholar 

  35. Yang, Y.; Wu, Y. K.; Ren, Q. Z.; Zhang, L. G.; Liu, S. J.; Zuo, Y. Y. Biophysical assessment of pulmonary surfactant predicts the lung toxicity of nanomaterials. Small Methods2018, 2, 1700367.

    Google Scholar 

  36. Zhan, Q. C.; Shi, X. Q.; Zhou, J. H.; Zhou, L.; Wei, S. H. Drug-controlled release based on complementary base pairing rules for photodynamicphotothermal synergistic tumor treatment. Small2019, 15, 1803926.

    Google Scholar 

  37. Zhang, D.; Wu, M.; Zeng, Y. Y.; Wu, L. J.; Wang, Q. T.; Han, X.; Liu, X. L.; Liu, J. F. Chlorin e6 conjugated poly(dopamine) nanospheres as PDT/PTT dual-modal therapeutic agents for enhanced cancer therapy. ACS Appl. Mater. Interfaces2015, 7, 8176–8187.

    CAS  Google Scholar 

  38. Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopaminemelanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater.2013, 25, 1353–1359.

    CAS  Google Scholar 

  39. Liu, F. Y.; He, X. X.; Zhang, J. P.; Chen, H. D.; Zhang, H. M.; Wang, Z. X. Controllable synthesis of polydopamine nanoparticles in microemulsions with pH-activatable properties for cancer detection and treatment. J. Mat. Chem. B2015, 3, 6731–6739.

    CAS  Google Scholar 

  40. Cheng, Y.; Chang, Y.; Feng, Y. L.; Jian, H.; Tang, Z. H.; Zhang, H. Y. Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew. Chem., Int. Ed.2018, 57, 246–251.

    CAS  Google Scholar 

  41. Cheng, Y.; Chang, Y.; Feng, Y. L.; Liu, N.; Sun, X. J.; Feng, Y. Q.; Li, X.; Zhang, H. Y. Simulated sunlight-mediated photodynamic therapy for melanoma skin cancer by titanium-dioxide-nanoparticle-gold-nanoclustergraphene heterogeneous nanocomposites. Small2017, 13, 1603935.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21703232, 21777152, and 21573216), Hundred Talent Program of Chinese Academy of Sciences, Jilin Provincial Science and Technology Development Program (Nos. 20180520145JH and 20160101304JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Cheng or Haiyuan Zhang.

Electronic Supplementary Material

12274_2019_2532_MOESM1_ESM.pdf

Polydopamine and ammonium bicarbonate coated and doxorubicin loaded hollow cerium oxide nanoparticles for synergistic tumor therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Cheng, Y., Yan, J. et al. Polydopamine and ammonium bicarbonate coated and doxorubicin loaded hollow cerium oxide nanoparticles for synergistic tumor therapy. Nano Res. 12, 2947–2953 (2019). https://doi.org/10.1007/s12274-019-2532-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2532-3

Keywords

Navigation