Skip to main content
Log in

Cerium oxide nanoparticles-mediated cascade catalytic chemo-photo tumor combination therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

ROS-based tumor therapy based on nanocatalytic medicine has recently been proposed for its tumor-specificity. However, a safe and highly efficient strategy towards getting high enough ROS to kill the hypoxic cancer cells is still a great challenge. Herein, we report a simple pH/H2O2-activatable, O2-evolving, and ROS regulating doxorubicin (DOX) and indocyanine green (ICG) co-loading PEGylated polyaniline (PANI) coated CeOx@polyacrylic acid (PAA) nanoclusters for highly selective and optimized cancer combination treatment. It can selectively and greatly enhance intracellular O2 and ROS levels in tumor region, which depends on two-step catalytic properties of nanoceria (Ce4+/Ce3+ = 3.46, neutral surface charge, mostly localize into the cytoplasm, pH 7.4–6.5, catalase-like catalytic agents convert to Ce4+/Ce3+ = 0.58, negative surface charge, mostly localize into the lysosomes, pH 5–4, oxidase-like catalytic agents, triggered by near infrared (NIR) laser irradiation). Furthermore, the protective effect of polyethylene glycol (PEG), PANI, and PAA ensure that the nanoceria can only play the role of catalase under the irradiation of NIR light arrived at the tumor area. Moreover, loading of nanoceria and ICG onto PANI greatly enhanced photo thermal effect of nanoparticles (NPs), which is useful for killing cancer cells by relieving hypoxia and promoting cross-membrane drug delivery to further enhance photodynamic therapy and chemotherapy efficiency. The chemo-photo combination therapies fantastically inhibited tumor growth and prevented tumor recurrence in vivo, suggesting a smart nanotheranostic system to achieve more precise and effective therapies in O2-deprived tumor tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vicent, M. J.; Greco, F.; Nicholson, R. I.; Paul, A.; Griffiths, P. C.; Duncan, R. Polymer therapeutics designed for a combination therapy of hormone-dependent cancer. Angew. Chem., Int. Ed. 2005, 44, 4061–4066.

    Article  CAS  Google Scholar 

  2. Lane, D. Designer combination therapy for cancer. Nat. Biotechnol. 2006, 24, 163–164.

    Article  CAS  Google Scholar 

  3. Zhang, L.; Su, H. L.; Wang, H. L.; Li, Q.; Li, X.; Zhou, C. Q.; Xu, J.; Chai, Y. M.; Liang, X. W.; Xiong, L. Q. et al. Tumor chemoradiotherapy with rod-shaped and spherical gold nano probes: Shape and active targeting both matter. Theranostics 2019, 9, 1893–1908.

    Article  CAS  Google Scholar 

  4. Wang, Y.; Wei, G. Q.; Zhang, X. B.; Xu, F. N.; Xiong, X.; Zhou, S. B. A step-by-step multiple stimuli-responsive nanoplatform for enhancing combined chemo-photodynamic therapy. Adv. Mater. 2017, 29, 1605357.

    Article  Google Scholar 

  5. Ji, C. D.; Gao, Q.; Dong, X. H.; Yin, W. Y.; Gu, Z. J.; Gan, Z. H.; Zhao, Y. L.; Yin, M. Z. A size-reducible nanodrug with an aggregation-enhanced photodynamic effect for deep chemo-photodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 11384–11388.

    Article  CAS  Google Scholar 

  6. Chen, W. H.; Liu, J. H.; Wang, Y.; Jiang, C. H.; Yu, B.; Sun, Z.; Lu, L. H. A C5N2 nanoparticle based direct nucleus delivery platform for synergistic cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 6290–6294.

    Article  CAS  Google Scholar 

  7. Meng, Z. Q.; Zhou, X. F.; Xu, J.; Han, X.; Dong, Z. L.; Wang, H. R.; Zhang, Y. J.; She, J. L.; Xu, L. G.; Wang, C. et al. Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv. Mater. 2019, 31, 1900927.

    Article  Google Scholar 

  8. Chu, C. C.; Ren, E.; Zhang, Y. M.; Yu, J. W.; Lin, H. R.; Pang, X.; Zhang, Y.; Liu, H.; Qin, Z. N.; Cheng, Y. et al. Zinc(II)-dipicolylamine coordination nanotheranostics: Toward synergistic nanomedicine by combined photo/gene therapy. Angew. Chem., Int. Ed. 2019, 58, 269–272.

    Article  CAS  Google Scholar 

  9. Yang, Z.; Fan, W. P.; Zou, J. H.; Tang, W.; Li, L.; He, L. C.; Shen, Z. Y.; Wang, Z. T.; Jacobson, O.; Aronova, M. A. et al. Precision cancer theranostic platform by in situ polymerization in perylene diimidehybridized hollow mesoporous organosilica nanoparticles. J. Am. Chem. Soc. 2019, 141, 14687–14698.

    Article  CAS  Google Scholar 

  10. Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.

    Article  Google Scholar 

  11. Jain, R. K. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 2005, 307, 58–62.

    Article  CAS  Google Scholar 

  12. Harris, A. L. Hypoxia—a key regulatory factor in tumour growth. Nat. Rev. Cancer 2002, 2, 38–47.

    Article  CAS  Google Scholar 

  13. Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin-Mno2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136.

    Article  CAS  Google Scholar 

  14. Chen, H. C.; Tian, J. W.; He, W. J.; Guo, Z. J. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 2015, 137, 1539–1547.

    Article  CAS  Google Scholar 

  15. Jakobsson, P. J.; Thorén, S.; Morgenstern, R.; Samuelsson, B. Identification of human prostaglandin E synthase: A microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc. Natl. Acad. Sci. USA 1999, 96, 7220–7225.

    Article  CAS  Google Scholar 

  16. Tannock, I. F.; Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989, 49, 4373–4384.

    CAS  Google Scholar 

  17. Yang, B. W.; Chen, Y.; Shi, J. L. Nanocatalytic medicine. Adv. Mater. 2019, 31, 1901778.

    Article  Google Scholar 

  18. Chen, C.; Ni, X.; Jia, S. R.; Liang, Y.; Wu, X. L.; Kong, D. L.; Ding, D. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 2019, 31, 1904914.

    Article  CAS  Google Scholar 

  19. Ni, X.; Zhang, X. Y.; Duan, X. C.; Zheng, H. L.; Xue, X. S.; Ding, D. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 2019, 19, 318–330.

    Article  CAS  Google Scholar 

  20. Chen, C.; Ni, X.; Tian, H. W.; Liu, Q.; Guo, D. S.; Ding, D. Calixarene-based supramolecular AIE dots with highly inhibited nonradiative decay and intersystem crossing for ultrasensitive fluorescence image-guided cancer surgery. Angew. Chem., Int. Ed. 2020, 59, 10008–10012.

    Article  CAS  Google Scholar 

  21. Feng, G. X.; Zhang, G. Q.; Ding, D. Design of superior phototheranostic agents guided by jablonski diagrams. Chem. Soc. Rev. 2020, 49, 8179–8234.

    Article  CAS  Google Scholar 

  22. Li, H.; Liu, C.; Zeng, Y. P.; Hao, Y. H.; Huang, J. W.; Yang, Z. Y.; Li, R. Nanoceria-mediated drug delivery for targeted photodynamic therapy on drug-resistant breast cancer. ACS Appl. Mater. Interfaces 2016, 8, 31510–31523.

    Article  CAS  Google Scholar 

  23. Hijaz, M.; Das, S.; Mert, I.; Gupta, A.; Al-Wahab, Z.; Tebbe, C.; Dar, S.; Chhina, J.; Giri, S.; Munkarah, A. et al. Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer. BMC Cancer 2016, 16, 220.

    Article  Google Scholar 

  24. Gao, R. J.; Mitra, R. N.; Zheng, M.; Wang, K.; Dahringer, J. C.; Han, Z. C. Developing nanoceria-based pH-dependent cancer-directed drug delivery system for retinoblastoma. Adv. Funct. Mater. 2018, 28, 1806248.

    Article  Google Scholar 

  25. Esch, F.; Fabris, S.; Zhou, L.; Montini, T.; Africh, C.; Fornasiero, P.; Comelli, G.; Rosei, R. Electron localization determines defect formation on ceria substrates. Science 2005, 309, 752–755.

    Article  CAS  Google Scholar 

  26. Yao, C.; Wang, W. X.; Wang, P. Y.; Zhao, M. Y.; Li, X. M.; Zhang, F. Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy. Adv. Mater. 2018, 30, 1704833.

    Article  Google Scholar 

  27. Karakoti, A. S.; Monteiro-Riviere, N. A.; Aggarwal, R.; Davis, J. P.; Narayan, R. J.; Self, W. T.; McGinnis, J.; Seal, S. Nanoceria as antioxidant: Synthesis and biomedical applications. JOM 2008, 60, 33–37.

    Article  CAS  Google Scholar 

  28. Zhu, H. J.; Fang, Y.; Miao, Q. Q.; Qi, X. Y.; Ding, D.; Chen, P.; Pu, K. Y. Regulating near-infrared photodynamic properties of semiconducting polymer nanotheranostics for optimized cancer therapy. ACS Nano 2017, 11, 8998–9009.

    Article  CAS  Google Scholar 

  29. Asati, A.; Santra, S.; Kaittanis, C.; Perez, J. M. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 2010, 4, 5321–5331.

    Article  CAS  Google Scholar 

  30. Xia, B.; Wang, B.; Shi, J. S.; Zhang, Y.; Zhang, Q.; Chen, Z. Y.; Li, J. C. Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer. Acta Biomater. 2017, 51, 197–208.

    Article  CAS  Google Scholar 

  31. Pirmohamed, T.; Dowding, J. M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A. S.; King, J. E. S.; Seal, S.; Self, W. T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738.

    Article  CAS  Google Scholar 

  32. Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4, 278–286.

    Article  CAS  Google Scholar 

  33. Celardo, I.; Pedersen, J. Z.; Traversa, E.; Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011, 3, 1411–1420.

    Article  CAS  Google Scholar 

  34. Nelson, B. C.; Johnson, M. E.; Walker, M. L.; Riley, K. R.; Sims, C. M. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 2016, 5, 15.

    Article  Google Scholar 

  35. Kuo, W. S.; Chang, Y. T.; Cho, K. C.; Chiu, K. C.; Lien, C. H.; Yeh, C. S.; Chen, S. J. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 2012, 33, 3270–3278.

    Article  CAS  Google Scholar 

  36. Sengupta, S.; Eavarone, D.; Capila, I.; Zhao, G. L.; Watson, N.; Kiziltepe, T.; Sasisekharan, R. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 2005, 436, 568–572.

    Article  CAS  Google Scholar 

  37. Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem., Int. Ed. 2009, 48, 2308–2312.

    Article  CAS  Google Scholar 

  38. Ju, E. G.; Dong, K.; Liu, Z.; Pu, F.; Ren, J. S.; Qu, X. G. Tumor microenvironment activated photothermal strategy for precisely controlled ablation of solid tumors upon NIR irradiation. Adv. Funct. Mater. 2015, 25, 1574–1580.

    Article  CAS  Google Scholar 

  39. Tan, X. X.; Wang, J. P.; Pang, X. J.; Liu, L.; Sun, Q.; You, Q.; Tan, F. P.; Li, N. Indocyanine green-loaded silver nanoparticle@polyaniline core/shell theranostic nanocomposites for photoacoustic/near-infrared fluorescence imaging-guided and single-light-triggered photothermal and photodynamic therapy. ACS Appl. Mater. Interfaces 2016, 8, 34991–35003.

    Article  CAS  Google Scholar 

  40. Sigler, P. B.; Masters, B. J. The hydrogen peroxide-induced Ce*(III)-Ce(IV) exchange system. J. Am. Chem. Soc. 1957, 79, 6353–6357.

    Article  CAS  Google Scholar 

  41. Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058.

  42. Heckert, E. G.; Karakoti, A. S.; Seal, S.; Self, W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709.

    Article  CAS  Google Scholar 

  43. Wang, C.; Xu, H.; Liang, C.; Liu, Y. M.; Li, Z. W.; Yang, G. B.; Cheng, L.; Li, Y. G.; Liu, Z. Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 2013, 7, 6782–6795.

    Article  CAS  Google Scholar 

  44. Lee, H.; Lee, E.; Kim, D. K.; Jang, N. K.; Jeong, Y. Y.; Jon, S. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J. Am. Chem. Soc. 2006, 128, 7383–7389.

    Article  CAS  Google Scholar 

  45. Wöhrle, D.; Shopova, M.; Müller, S.; Milev, A. D.; Mantareva, V. N.; Krastev, K. K. Liposome-delivered Zn(II)-2,3-naphthalocyanines as potential sensitizers for PDT: Synthesis, photochemical, pharmacokinetic and phototherapeutic studies. J. Photochem. Photobiol. B 1993, 21, 155–165.

    Article  Google Scholar 

  46. Vlkolinský, R.; Štolc, S. Effects of stobadine, melatonin, and other antioxidants on hypoxia/reoxygenation-induced synaptic transmission failure in rat hippocampal slices. Brain Res. 1999, 850, 118–126.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Key Research and Development Program of China (Nos. 2018YFF0215500), National Natural Science Foundation of China (Nos. 21105047, 51773089, and 51973091), the Natural Science Foundation of Jiangsu Province (Nos. BK20181204 and BK20171258), and the Science and Technology Items Fund of Nantong City (Applied Basic Research Programs 2017-N, No. MS12017027-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Ding.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Ding, Y. Cerium oxide nanoparticles-mediated cascade catalytic chemo-photo tumor combination therapy. Nano Res. 15, 333–345 (2022). https://doi.org/10.1007/s12274-021-3480-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3480-2

Keywords

Navigation