Skip to main content
Log in

Amine-rich carbon nitride nanoparticles: Synthesis, covalent functionalization with proteins and application in a fluorescence quenching assay

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon nitride nanoparticles (CNNPs) have been employed as fluorescent sensing tools owing to their unique features, e.g. low cost production, high stability in water and high photoluminescence quantum yield. Here, an easy and versatile synthetic approach was exploited to design fluorescent nanoparticles with surface functionalities suitable for covalent binding to bioligands. High hydrophilic, brightly fluorescent CNNPs, rich of superficial amines, were obtained from the thermal condensation of urea and lysine (CNNPLys) and by tuning the precursor ratio and the heating time. Structure and size of the functionalized nanoparticles were characterized through infrared (IR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS). Their optical properties were studied by ultraviolet-visible (UV-Vis) and fluorescence spectroscopy. The superficial primary amino groups, furnished by the lysine co-precursor, enabled for covalently linking CNNPLys to model proteins. The CNNPLys-protein conjugates excited under UV irradiation emit in the 400–450 nm visible range (quantum yield 24%). The applicability of CNNPLys as novel fluorescent probes was demonstrated by a fluorescence quenching assay, in which gold nanoparticles (GNPs) were attached to Staphylococcal protein A and employed to quench the CNNPLys fluorescence by resonant energy transfer (FRET). The quenching occurred upon formation of the specific binding between the GNP-linked protein A and CNNPLys-tagged immunoglobulins, while the inhibition of the binding resulted in the recovery of CNNPLys luminescence. The synthetic strategy, based on combining a “conjugated polymer”-forming unit (urea) and a co-precursor able to provide the desired functional group (lysine), allows designing innovative materials for the development of new generation fluorescence biosensors in which easily functionalized fluorophores are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma, A.; Khan, R.; Catanante, G.; Sherazi, T. A.; Bhand, S.; Hayat, A.; Marty, J. L. Designed strategies for fluorescence-based biosensors for the detection of mycotoxins. Toxins 2018, 10, 197.

    Article  Google Scholar 

  2. Feng, X. L.; Liu, L. B.; Wang, S.; Zhu, D. B. Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem. Soc. Rev. 2010, 39, 2411–2419.

    Article  Google Scholar 

  3. Liu, G. D.; Wang, J.; Kim, J.; Jan, M. R.; Collins, G. E. Electrochemical coding for multiplexed immunoassays of proteins. Anal. Chem. 2004, 76, 7126–7130.

    Article  Google Scholar 

  4. Martynenko, I. V.; Litvin, A. P.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun’ko, Y. K. Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 2017, 5, 6701–6727.

    Article  Google Scholar 

  5. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11–18.

    Article  Google Scholar 

  6. Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768.

    Article  Google Scholar 

  7. Goftman, V. V.; Aubert, T.; Ginste, D. V.; Van Deun, R.; Beloglazova, N. V.; Hens, Z.; De Saeger, S.; Goryacheva, I. Y. Synthesis, modification, bioconjugation of silica coated fluorescent quantum dots and their application for mycotoxin detection. Biosens. Bioelectron. 2016, 79, 476–481.

    Article  Google Scholar 

  8. Speranskaya, E. S.; Beloglazova, N. V.; Lenain, P.; De Saeger, S.; Wang, Z. H.; Zhang, S. X.; Hens, Z.; Knopp, D.; Niessner, R.; Potapkin, D. V. et al. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosens. Bioelectron. 2014, 53, 225–231.

    Article  Google Scholar 

  9. Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

    Article  Google Scholar 

  10. Luo, P. G.; Sahu, S.; Yang, S. T.; Sonkar, S. K.; Wang, J. P.; Wang, H. F.; LeCroy, G. E.; Cao, L.; Sun, Y. P. Carbon “quantum” dots for optical bioimaging. J. Mater. Chem. B 2013, 1, 2116–2127.

    Article  Google Scholar 

  11. Wen, J.; Xu, Y. Q.; Li, H. J.; Lu, A. P.; Sun, S. G. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem. Commun. 2015, 51, 11346–11358.

    Article  Google Scholar 

  12. Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013, 3, 1473.

    Article  Google Scholar 

  13. Esteves da Silva, J. C. G.; Gonçalves, H. M. R. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal. Chem. 2011, 30, 1327–1336.

    Article  Google Scholar 

  14. Barman, S.; Sadhukhan, M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J. Mater. Chem. 2012, 22, 21832–21837.

    Article  Google Scholar 

  15. Li, Q.; Ohulchanskyy, T. Y.; Liu, R. L.; Koynov, K.; Wu, D. Q.; Best, A.; Kumar, R.; Bonoiu, A.; Prasad, P. N. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C 2010, 114, 12062–12068.

    Article  Google Scholar 

  16. Chen, B. S.; Li, F. M.; Li, S. X.; Weng, W.; Guo, H. X.; Guo, T.; Zhang, X. Y.; Chen, Y. B.; Huang, T. T.; Hong, X. L. et al. Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging. Nanoscale 2013, 5, 1967–1971.

    Article  Google Scholar 

  17. Zuo, J.; Jiang, T.; Zhao, X. J.; Xiong, X. H.; Xiao, S. J.; Zhu, Z. Q. Preparation and application of fluorescent carbon dots. J. Nanomater. 2015, 2015, 787862.

    Article  Google Scholar 

  18. Cao, L.; Meziani, M. J.; Sahu, S.; Sun, Y. P. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 2013, 46, 171–180.

    Article  Google Scholar 

  19. Wu, P.; Yan, X. P. Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 2013, 42, 5489–5521.

    Article  Google Scholar 

  20. Chandra, S.; Patra, P.; Pathan, S. H.; Roy, S.; Mitra, S.; Layek, A.; Bhar, R.; Pramanik, P.; Goswami, A. Luminescent S-doped carbon dots: An emergent architecture for multimodal applications. J. Mater. Chem. B 2013, 1, 2375–2382.

    Article  Google Scholar 

  21. Tabaraki, R.; Abdi, O.; Yousefipour, S. Green and selective fluorescent sensor for detection of Sn (IV) and Mo (VI) based on boron and nitrogen-co-doped carbon dots. J. Fluoresc. 2017, 27, 651–657.

    Article  Google Scholar 

  22. Lu, Y. C.; Chen, J.; Wang, A. J.; Bao, N.; Feng, J. J.; Wang, W. P.; Shao, L. X. Facile synthesis of oxygen and sulfur co-doped graphitic carbon nitride fluorescent quantum dots and their application for mercury(II) detection and bioimaging. J. Mater. Chem. C 2015, 3, 73–78.

    Article  Google Scholar 

  23. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 2013, 85, 5595–5599.

    Article  Google Scholar 

  24. Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21.

    Article  Google Scholar 

  25. Wang, Q. B.; Wang, W.; Lei, J. P.; Xu, N.; Gao, F. L.; Ju, H. X. Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal. Chem. 2013, 85, 12182–12188.

    Article  Google Scholar 

  26. Cao, X. T.; Ma, J.; Lin, Y. P.; Yao, B. X.; Li, F. M.; Weng, W.; Lin, X. C. A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions. Spectrochim. Acta Part A 2015, 151, 875–880.

    Article  Google Scholar 

  27. Zhan, Y.; Liu, Z. M.; Liu, Q. Q.; Huang, D.; Wei, Y.; Hu, Y. C.; Lian, X. J.; Hu, C. F. A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications. New J. Chem. 2017, 41, 3930–3938.

    Article  Google Scholar 

  28. Zhou, J.; Yang, Y.; Zhang, C. Y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem. Commun. 2013, 49, 8605–8607.

    Article  Google Scholar 

  29. Guo, J. Q.; Lin, Y. P.; Huang, H.; Zhang, S. C.; Huang, T. T.; Weng, W. One-pot fabrication of fluorescent carbon nitride nanoparticles with high crystallinity as a highly selective and sensitive sensor for free chlorine. Sens. Actuators B 2017, 244, 965–971.

    Article  Google Scholar 

  30. Shen, L. M.; Zhang, L. P.; Chen, M. L.; Chen, X. W.; Wang, J. H. The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging. Carbon 2013, 55, 343–349.

    Article  Google Scholar 

  31. Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

    Article  Google Scholar 

  32. Zhang, Y. J.; Mori, T.; Ye, J. H. Polymeric carbon nitrides: Semiconducting properties and emerging applications in photocatalysis and photoelectrochemical energy conversion. Sci. Adv. Mater. 2012, 4, 282–291.

    Article  Google Scholar 

  33. Ren, X. L.; Meng, X. W.; Ren, J.; Tang, F. Q. Graphitic carbon nitride nanosheets with tunable optical properties and their superoxide dismutase mimetic ability. RSC Adv. 2016, 6, 92839–92844.

    Article  Google Scholar 

  34. Capilli, G.; Costamagna, M.; Sordello, F.; Minero, C. Synthesis, characterization and photocatalytic performance of p-type carbon nitride. Appl. Catal. B: Environ. 2019, 242, 121–131.

    Article  Google Scholar 

  35. Shiravand, G.; Badiei, A.; Ziarani, G. M. Carboxyl-rich g-C3N4 nanoparticles: Synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sens. Actuators B 2017, 242, 244–252.

    Article  Google Scholar 

  36. Liu, S.; Tian, J. Q.; Wang, L.; Luo, Y. L.; Sun, X. P. A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Adv. 2012, 2, 411–413.

    Article  Google Scholar 

  37. Wang, S.; Liu, R. Q.; Li, C. C. Highly selective and sensitive detection of Hg2+ based on Förster resonance energy transfer between CdSe quantum dots and g-C3N4 nanosheets. Nanoscale Res Lett 2018, 13, 235.

    Article  Google Scholar 

  38. Han, J.; Zou, H. Y.; Gao, M. X.; Huang, C. Z. A graphitic carbon nitride based fluorescence resonance energy transfer detection of riboflavin. Talanta 2016, 148, 279–284.

    Article  Google Scholar 

  39. Wang, Y. P.; Wang, J. S.; Ma, P. P.; Yao, H. C.; Zhang, L.; Li, Z. J. Synthesis of fluorescent polymeric carbon nitride quantum dots in molten salts for security inks. New J. Chem. 2017, 41, 14918–14923.

    Article  Google Scholar 

  40. Lazauskas, A.; Baltrusaitis, J.; Puodžiukynas, L.; Andrulevičius, M.; Bagdžiūnas, G.; Volyniuk, D.; Meškinis, Š.; Niaura, G.; Tamulevičius, T.; Jankauskaitė, V. Characterization of urea derived polymeric carbon nitride and resultant thermally vacuum deposited amorphous thin films: Structural, chemical and photophysical properties. Carbon 2016, 107, 415–425.

    Article  Google Scholar 

  41. Zhuang, Q. F.; Sun, L. M.; Ni, Y. N. One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions. Talanta 2017, 164, 458–462.

    Article  Google Scholar 

  42. Bai, X. J.; Yan, S. C.; Wang, J. J.; Wang, L.; Jiang, W. J.; Wu, S. L.; Sun, C. P.; Zhu, Y. F. A simple and efficient strategy for the synthesis of a chemically tailored g-C3N4 material. J. Mater. Chem. A 2014, 2, 17521–17529.

    Article  Google Scholar 

  43. Hou, Y. X.; Lu, Q. J.; Deng, J. H.; Li, H. T.; Zhang, Y. Y. One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal. Chim. Acta 2015, 866, 69–74.

    Article  Google Scholar 

  44. Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 1948, 437, 55–75.

    Article  Google Scholar 

  45. Minella, M.; Demontis, M.; Sarro, M.; Sordello, F.; Calza, P.; Minero, C. Photochemical stability and reactivity of graphene oxide. J. Mater. Sci. 2015, 50, 2399–2409.

    Article  Google Scholar 

  46. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254.

    Article  Google Scholar 

  47. Anfossi, L.; Di Nardo, F.; Profiti, M.; Nogarol, C.; Cavalera, S.; Baggiani, C.; Giovannoli, C.; Spano, G.; Ferroglio, E.; Mignone, W. et al. A versatile and sensitive lateral flow immunoassay for the rapid diagnosis of visceral leishmaniasis. Anal. Bioanal. Chem. 2018, 410, 4123–4134.

    Article  Google Scholar 

  48. Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.

    Article  Google Scholar 

  49. Li, L. B.; Li, L.; Wang, C.; Liu, K. Y.; Zhu, R. H.; Qiang, H.; Lin, Y. Q. Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim. Acta 2015, 182, 763–770.

    Article  Google Scholar 

  50. Ghica, M. E.; Pauliukaite, R.; Fatibello-Filho, O.; Brett, C. M. A. Application of functionalised carbon nanotubes immobilised into chitosan films in amperometric enzyme biosensors. Sens. Actuators B 2009, 142, 308–315.

    Article  Google Scholar 

  51. Hermanson, G. T. Bioconjugate Techniques; 3rd ed. Elsevier: Amsterdam, 2013.

    Google Scholar 

  52. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer: New York, 1983.

    Book  Google Scholar 

  53. Brouwer, A. M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228.

    Article  Google Scholar 

  54. Jazayeri, M. H.; Amani, H.; Pourfatollah, A. A.; Pazoki-Toroudi, H.; Sedighimoghaddam, B. Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Bio-Sens. Res. 2016, 9, 17–22.

    Article  Google Scholar 

  55. Dunn, J.; Wild, D. Calibration curve fitting. In The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques. Wild, D., Ed.; 4th ed. Elsevier: Amsterdam, 2013; pp 323–336.

    Chapter  Google Scholar 

  56. Zhao, D. H.; Swager, T. M. Sensory responses in solution vs solid state: A fluorescence quenching study of poly(iptycenebutadiynylene)s. Macromolecules 2005, 38, 9377–9384.

    Article  Google Scholar 

  57. De, M.; Rana, S.; Akpinar, H.; Miranda, O. R.; Arvizo, R. R.; Bunz, U. H. F.; Rotello, V. M. Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nat. Chem. 2009, 1, 461–465.

    Article  Google Scholar 

  58. Vendrell, M.; Krishna, G. G.; Ghosh, K. K.; Zhai, D. T.; Lee, J. S.; Zhu, Q.; Yau, Y. H.; Shochat, S. G.; Kim, H.; Chung, J. et al. Solid-phase synthesis of BODIPY dyes and development of an immunoglobulin fluorescent sensor. Chem. Commun. 2011, 47, 8424–8426.

    Article  Google Scholar 

  59. Huang, A.; Li, W. W.; Shi, S.; Yao, T. M. Quantitative fluorescence quenching on antibody-conjugated graphene oxide as a platform for protein sensing. Sci. Rep. 2017, 7, 40772.

    Article  Google Scholar 

  60. Zhang, P.; Zhuo, S. J.; Sun, L. L.; Zhang, P.; Zhu, C. Q. Determination of gamma-globulin at nanogram levels by its quenching effect on the fluorescence of a red emitting conjugated polymer. New J. Chem. 2015, 39, 4551–4555.

    Article  Google Scholar 

  61. Okochi, M.; Sugita, T.; Tanaka, M.; Honda, H. A molecular peptide beacon for IgG detection. RSC Adv. 2015, 5, 91988–91992.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from project Ricerca Locale-Torino University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura Anfossi or Marco Minella.

Electronic Supplementary Material

12274_2019_2449_MOESM1_ESM.pdf

Amine-rich carbon nitride nanoparticles: Synthesis, covalent functionalization with proteins and application in a fluorescence quenching assay

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capilli, G., Cavalera, S., Anfossi, L. et al. Amine-rich carbon nitride nanoparticles: Synthesis, covalent functionalization with proteins and application in a fluorescence quenching assay. Nano Res. 12, 1862–1870 (2019). https://doi.org/10.1007/s12274-019-2449-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2449-x

Keywords

Navigation