Skip to main content
Log in

Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Microbial fuel cells and biophotovoltaics represent promising technologies for green bioelectricity generation. However, these devices suffer from low durability and efficiency that stem from their reliance on living organisms to act as catalysts. Such limitations can be overcome with augmented capabilities enabled by nanotechnology. This review presents an overview of the different nanomaterials used to enhance bioelectricity generation through improved light harvesting, extracellular electron transfer, and anode performance. The implementation of nanomaterials in whole-cell energy devices holds promise in developing bioelectrical devices that are suitable for industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; United Nations: New York, 2017.

    Google Scholar 

  2. Huang, L. B.; Xu, W.; Hao, J. H. Energy device applications of synthesized 1D polymer nanomaterials. Small 2017, 13, 1701820.

    Google Scholar 

  3. Jiang, B. P.; Zhou, B.; Lin, Z. X.; Liang, H.; Shen, X. C. Recent advances in carbon nanomaterials for cancer phototherapy. Chem.—Eur. J. 2019, 25, 3993–4004.

    Google Scholar 

  4. Ghosal, K.; Sarkar, K. Biomedical applications of graphene nanomaterials and beyond. ACS Biomater. Sci. Eng. 2018, 4, 2653–2703.

    Google Scholar 

  5. Kwon, O. S.; Song, H. S.; Park, T. H.; Jang, J. Conducting nanomaterial sensor using natural receptors. Chem. Rev. 2019, 119, 36–93.

    Google Scholar 

  6. Schneemann, A.; White, J. L.; Kang, S.; Jeong, S.; Wan, L. F.; Cho, E. S.; Heo, T. W.; Prendergast, D.; Urban, J. J.; Wood, B. C. et al. Nanostructured metal hydrides for hydrogen storage. Chem. Rev. 2018, 118, 10775–10839.

    Google Scholar 

  7. Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.

    Google Scholar 

  8. Wang, H.; Chen, Q. W.; Zhou, S. Q. Carbon-based hybrid nanogels: A synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018, 47, 4198–4232.

    Google Scholar 

  9. Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A. J. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chem. Rev. 2019, 119, 120–194.

    Google Scholar 

  10. Shin, T. H.; Cheon, J. Synergism of nanomaterials with physical stimuli for biology and medicine. Acc. Chem. Res. 2017, 50, 567–572.

    Google Scholar 

  11. Amirjani, A.; Fatmehsari, D. H. Colorimetric detection of ammonia using smartphones based on localized surface Plasmon resonance of silver nanoparticles. Talanta 2018, 176, 242–246.

    Google Scholar 

  12. Chen, J. M.; Guo, L. H.; Qiu, B.; Lin, Z. Y.; Wang, T. Application of ordered nanoparticle self-assemblies in surface-enhanced spectroscopy. Mater. Chem. Front. 2018, 2, 835–860.

    Google Scholar 

  13. Amirjani, A.; Haghshenas, D. F. Ag nanostructures as the surface Plasmon resonance (SPR)-based sensors: A mechanistic study with an emphasis on heavy metallic ions detection. Sens. Actuators B Chem. 2018, 273, 1768–1779.

    Google Scholar 

  14. Kalathil, S.; van Nguyen, H.; Shim, J. J.; Khan, M. M.; Lee, J.; Cho, M. H. Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. J. Nanosci. Nanotechnol. 2013, 13, 7712–7716.

    Google Scholar 

  15. Kou, T. Y.; Yang, Y.; Yao, B.; Li, Y. Interpenetrated bacteria-carbon nanotubes film for microbial fuel cells. Small Methods 2018, 2, 1800152.

    Google Scholar 

  16. Wu, R. R.; Cui, L.; Chen, L. X.; Wang, C.; Cao, C. L.; Sheng, G P.; Yu, H.; Zhao, F. Effects of bio-Au nanoparticles on electrochemical activity of Shewanella oneidensis wild type and AomcA/mtrC mutant. Sci. Rep. 2013, 3, 3307.

    Google Scholar 

  17. Wu, R. R.; Wang, C.; Shen, J. S.; Zhao, F. A role for biosynthetic CdS quantum dots in extracellular electron transfer of Saccharomyces cerevisiae. Process Biochem. 2015, 50, 2061–2065.

    Google Scholar 

  18. Li, W.; Wu, S. S.; Zhang, H. R.; Zhang, X. J.; Zhuang, J. L.; Hu, C. F.; Liu, Y. L.; Lei, B. F.; Ma, L.; Wang, X. J. Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots. Adv. Funct. Mater. 2018, 28, 1804004.

    Google Scholar 

  19. Chandra, S.; Pradhan, S.; Mitra, S.; Patra, P.; Bhattacharya, A.; Pramanik, P.; Goswami, A. High throughput electron transfer from carbon dots to chloroplast: A rationale of enhanced photosynthesis. Nanoscale 2014, 6, 3647–3655.

    Google Scholar 

  20. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., in press, DOI: https://doi.org/10.1016/J.ARABJC.2017.05.011.

  21. de Carvalho, J. F.; de Medeiros, S. N.; Morales, M. A.; Dantas, A. L.; Carriço, A. S. Synthesis of magnetite nanoparticles by high energy ball milling. Appl. Surf. Sci. 2013, 275, 84–87.

    Google Scholar 

  22. Tsuzuki, T.; McCormick, P. G. Mechanochemical synthesis of nanoparticles. J. Mater. Sci. 2004, 39, 5143–5146.

    Google Scholar 

  23. Mueller, R.; Mädler, L.; Pratsinis, S. E. Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem. Eng. Sci. 2003, 58, 1969–1976.

    Google Scholar 

  24. Gondal, M. A.; Drmosh, Q. A.; Yamani, Z. H.; Saleh, T. A. Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl. Surf. Sci. 2009, 256, 298–304.

    Google Scholar 

  25. Sen, P.; Ghosh, J.; Abdullah, A.; Kumar, P.; Vandana. Preparation of Cu, Ag, Fe and A1 nanoparticles by the exploding wire technique. J. Chem. Sci. 2003, 115, 499–508.

    Google Scholar 

  26. Pérez-Tijerina, E.; Mejía-Rosales, S.; Inada, H.; José-Yacamán, M. Effect of temperature on AuPd nanoparticles produced by inert gas condensation. J. Phys. Chem. C 2010, 114, 6999–7003.

    Google Scholar 

  27. Gutiérrez-Wing, C.; Velázquez-Salazar, J. J.; José-Yacamán, M. Procedures for the synthesis and capping of metal nanoparticles. In Nanoparticles in Biology and Medicine: Methods and Protocols; Soloviev, M., Ed.; Humana Press: Totowa, NJ, 2012; pp 3–19.

    Google Scholar 

  28. Duan, H. H.; Wang, D. S.; Li, Y. D. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792.

    Google Scholar 

  29. Rivero, P. J.; Goicoechea, J.; Urrutia, A.; Arregui, F. J. Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles. Nanoscale Res. Lett. 2013, 8, 101.

    Google Scholar 

  30. Phan, C. M.; Nguyen, H. M. Role of capping agent in wet synthesis of nanoparticles. J. Phys. Chem. A 2017, 121, 3213–3219.

    Google Scholar 

  31. Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670.

    Google Scholar 

  32. Dzimitrowicz, A.; Jamroz, P.; diCenzo, G. C.; Gil, W.; Bojszczak, W.; Motyka, A.; Pogoda, D.; Pohl, P. Fermented juices as reducing and capping agents for the biosynthesis of size-defined spherical gold nanoparticles. J. Saudi Chem. Soc. 2018, 22, 767–776.

    Google Scholar 

  33. Tan, Y. N.; Lee, J. Y.; Wang, D. I. C. Uncovering the design rules for peptide synthesis of metal nanoparticles. J. Am. Chem. Soc. 2010, 132, 5677–5686.

    Google Scholar 

  34. Chiu, C. Y.; Li, Y. J.; Ruan, L. Y.; Ye, X. C.; Murray, C. B.; Huang, Y. Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat. Chem. 2011, 3, 393–399.

    Google Scholar 

  35. Jiang, X. C.; Hu, J. S.; Lieber, A. M.; Jackan, C. S.; Biffinger, J. C.; Fitzgerald, L. A.; Ringeisen, B. R.; Lieber, C. M. Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett. 2014, 14, 6737–6742.

    Google Scholar 

  36. Wu, X. E.; Zhao, F.; Rahunen, N.; Varcoe, J. R.; Avignone-Rossa, C.; Thumser, A. E.; Slade, R. C. T. A role for microbial palladium nanoparticles in extracellular electron transfer. Angew. Chem. 2011, 123, 447–450.

    Google Scholar 

  37. Dong, C. F.; Zhang, X. L.; Cai, H.; Cao, C. L. Green synthesis of biocompatible silver nanoparticles mediated by Osmanthus fragrans extract in aqueous solution. Optik 2016, 127, 10378–10388.

    Google Scholar 

  38. Huang, H. Z.; Yang, X. R. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr. Res. 2004, 339, 2627–2631.

    Google Scholar 

  39. Hulkoti, N. I.; Taranath, T. C. Biosynthesis of nanoparticles using microbes—A review. Colloids Surf. B Biointerfaces 2014, 121, 474–483.

    Google Scholar 

  40. Freitas, D. V.; Passos, S. G. B.; Dias, J. M. M.; Mansur, A.; Carvalho, S. M.; Mansur, H.; Navarro, M. Toward greener electrochemical synthesis of composition-tunable luminescent CdX-based (X = Te, Se, S) quantum dots for bioimaging cancer cells. Sens. Actuators B Chem. 2017, 250, 233–243.

    Google Scholar 

  41. Kuo, T. R.; Hung, S. T.; Lin, Y. T.; Chou, T. L.; Kuo, M. C.; Kuo, Y. P.; Chen, C. C. Green synthesis of InP/ZnS core/shell quantum dots for application in heavy-metal-free light-emitting diodes. Nanoscale Res. Lett. 2017, 12, 537.

    Google Scholar 

  42. Wang, Z.; Cao, L. J.; Ding, Y. M.; Shi, R.; Wang, X. J.; Lu, H.; Liu, Z. D.; Xiu, F.; Liu, J. Q.; Huang, W. One-step and green synthesis of nitrogen-doped carbon quantum dots for multifunctional electronics. RSC Adv. 2017, 7, 21969–21973.

    Google Scholar 

  43. Durmusoglu, E. G.; Turker, Y.; Acar, H. Y. Green synthesis of strongly luminescent, ultrasmall PbS and PbSe quantum dots. J. Phys. Chem. C 2017, 121, 12407–12415.

    Google Scholar 

  44. Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 2001, 105, 8861–8871.

    Google Scholar 

  45. Gao, X. H.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons, J. W.; Nie, S. M. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005, 16, 63–72.

    Google Scholar 

  46. Pu, Y.; Cai, F. H.; Wang, D.; Wang, J. X.; Chen, J. F. Colloidal synthesis of semiconductor quantum dots toward large-scale production: A review. Ind. Eng. Chem. Res. 2018, 57, 1790–1802.

    Google Scholar 

  47. Baskoutas, S.; Terzis, A. F. Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 2006, 99, 013708.

    Google Scholar 

  48. Nabiev, I.; Rakovich, A.; Sukhanova, A.; Lukashev, E.; Zagidullin, V.; Pachenko, V.; Rakovich, Y. P.; Donegan, J. F.; Rubin, A. B.; Govorov, A. O. Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers. Angew. Chem., Int. Ed. 2010, 49, 7217–7221.

    Google Scholar 

  49. Bao, H. F.; Lu, Z. S.; Cui, X. Q.; Qiao, Y.; Guo, J.; Anderson, J. M.; Li, C. M. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater. 2010, 6, 3534–3541.

    Google Scholar 

  50. Bao, H. F.; Hao, N.; Yang, Y. X.; Zhao, D. Y. Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res. 2010, 3, 481–489.

    Google Scholar 

  51. Chen, G. Q.; Yi, B.; Zeng, G. M.; Niu, Q. Y.; Yan, M.; Chen, A. W.; Du, J. J.; Huang, J.; Zhang, Q. H. Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids Surf. B Biointerfaces 2014, 117, 199–205.

    Google Scholar 

  52. Boghossian, A. A.; Sen, F.; Gibbons, B. M.; Sen, S.; Faltermeier, S. M.; Giraldo, J. P.; Zhang, C. T.; Zhang, J. Q.; Heller, D. A.; Strano, M. S. Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv. Energy Mater. 2013, 3, 881–893.

    Google Scholar 

  53. Hong, F. S.; Zhou, J.; Liu, C.; Yang, F.; Wu, C.; Zheng, L.; Yang, P. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 2005, 105, 269–279.

    Google Scholar 

  54. Sun, D. Q.; Hussain, H. I.; Yi, Z. F.; Rookes, J. E.; Kong, L. X.; Cahill, D. M. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 2016, 152, 81–91.

    Google Scholar 

  55. Nikam, A. V.; Prasad, B. L. V.; Kulkarni, A. A. Wet chemical synthesis of metal oxide nanoparticles: A review. CrystEngComm 2018, 20, 5091–5107.

    Google Scholar 

  56. Rufus, A.; Sreeju, N.; Philip, D. Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv. 2016, 6, 94206–94217.

    Google Scholar 

  57. Santhoshkumar, J.; Kumar, S. V.; Rajeshkumar, S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour. Effic. Technol. 2017, 3, 459–465.

    Google Scholar 

  58. Kumar, P. P. N. V.; Shameem, U.; Kollu, P.; Kalyani, R. L.; Pammi, S. V. N. Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. Bionanoscience 2015, 5, 135–139.

    Google Scholar 

  59. Zaytseva, O.; Neumann, G. Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric. 2016, 3, 17.

    Google Scholar 

  60. Endo, M.; Iijima, S.; Dresselhaus, S. M. Carbon Nanotubes. Carbon; Elsevier: Oxford, 1996.

    Google Scholar 

  61. Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.

    Google Scholar 

  62. Scott, L. T.; Boorum, M. M.; Mcmahon, B. J.; Hagen, S.; Mack, J.; Blank, J.; Wegner, H.; de Meijere, A. A rational chemical synthesis of C60. Science 2002, 295, 1500–1503.

    Google Scholar 

  63. Yadav, B. C.; Kumar, R. Structure, properties and applications of fullerenes. Int. J. Nanotechnol. Appl. 2008, 2, 15–24.

    Google Scholar 

  64. Tripathi, D. K.; Ahmad, P.; Sharma, S.; Chauhan, D. K.; Dubey, N. K. Nanomaterials in Plants, Algae, and Microorganisms: Concepts and Controversies: Volume 1; Academic Press: London, 2017.

    Google Scholar 

  65. Lin, S. J.; Reppert, J.; Hu, Q.; Hudson, J. S.; Reid, M. L.; Ratnikova, T. A.; Rao, A. M.; Luo, H.; Ke, P. C. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 2009, 5, 1128–1132.

    Google Scholar 

  66. Imahori, H.; Mori, Y.; Matano, Y. Nanostructured artificial photosynthesis. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 51–83.

    Google Scholar 

  67. D’Souza, F.; Smith, P. M.; Zandler, M. E.; McCarty, A. L.; Itou, M.; Araki, Y.; Ito, O. Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: A model for the photosynthetic antenna-reaction center complex. J. Am. Chem. Soc. 2004, 126, 7898–7907.

    Google Scholar 

  68. Imahori, H.; Fukuzumi, S. Porphyrin-and fullerene-based molecular photovoltaic devices. Adv. Funct. Mater. 2004, 14, 525–536.

    Google Scholar 

  69. El-Khouly, M. E.; Araki, Y.; Fujitsuka, M.; Watanabe, A.; Ito, O. Photoinduced electron transfer between chlorophylls (a/b) and fullerenes (C60/C70) studied by laser flash photolysis. Photochem. Photobiol. 2001, 74, 22–30.

    Google Scholar 

  70. Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014, 9, 393.

    Google Scholar 

  71. Bronikowski, M. J.; Willis, P. A.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. A 2001, 19, 1800–1805.

    Google Scholar 

  72. Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 2003, 125, 11186–11187.

    Google Scholar 

  73. Kitiyanan, B.; Alvarez, W. E.; Harwell, J. H.; Resasco, D. E. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem. Phys. Lett. 2000, 317, 497–503.

    Google Scholar 

  74. Herrera, J. E.; Balzano, L.; Borgna, A.; Alvarez, W. E.; Resasco, D. E. Relationship between the structure/composition of Co-Mo catalysts and their ability to produce single-walled carbon nanotubes by CO disproportionation. J. Catal. 2001, 204, 129–145.

    Google Scholar 

  75. Giraldo, J. P.; Landry, M. P.; Faltermeier, S. M.; McNicholas, T. P.; Iverson, N. M.; Boghossian, A. A.; Reuel, N. F.; Hilmer, A. J.; Sen, F.; Brew, J. A. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 2014, 13, 400–408.

    Google Scholar 

  76. Dorogi, M.; Bálint, Z.; Mikó, C.; Vileno, B.; Milas, M.; Hernádi, K.; László, F.; Váró, G.; Nagy, L. Stabilization effect of single-walled carbon nanotubes on the functioning of photosynthetic reaction centers. J. Phys. Chem. B 2006, 110, 21473–21479.

    Google Scholar 

  77. Kaniber, S. M.; Simmel, F. C.; Holleitner, A. W.; Carmeli, I. The optoelectronic properties of a photosystem I-carbon nanotube hybrid system. Nanotechnology 2009, 20, 345701.

    Google Scholar 

  78. Sekar, N.; Umasankar, Y.; Ramasamy, R. P. Photocurrent generation by immobilized cyanobacteria via direct electron transport in photobioelectrochemical cells. Phys. Chem. Chem. Phys. 2014, 16, 7862–7871.

    Google Scholar 

  79. Yan, F. F.; He, Y. R.; Wu, C.; Cheng, Y. Y.; Li, W. W.; Yu, H. Q. Carbon nanotubes alter the electron flow route and enhance nitrobenzene reduction by Shewanella oneidensis MR-1. Environ. Sci. Technol. Lett. 2014, 1, 128–132.

    Google Scholar 

  80. Kim, S. I.; Roh, S. H. Multiwalled carbon nanotube/polyarcylonitrile composite as anode material for microbial fuel cells application. J. Nanosci. Nanotechnol. 2010, 10, 3271–3274.

    Google Scholar 

  81. Wang, C.; Waje, M.; Wang, X.; Tang, J. M.; Haddon, R. C.; Yan, Y. S. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett. 2004, 4, 345–348.

    Google Scholar 

  82. Danilov, M. O.; Melezhyk, A. V. Carbon nanotubes modified with catalyst—Promising material for fuel cells. J. Power Sources 2006, 163, 376–381.

    Google Scholar 

  83. Peng, L.; You, S. J.; Wang, J. Y. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens. Bioelectron. 2010, 25, 1248–1251.

    Google Scholar 

  84. Zhao, C. E.; Wu, J. S.; Ding, Y. Z.; Wang, V. B.; Zhang, Y. D.; Kjelleberg, S.; Loo, J. S. C.; Cao, B.; Zhang, Q. C. Hybrid conducting biofilm with built-in bacteria for high-performance microbial fuel cells. ChemElectroChem 2015, 2, 654–658.

    Google Scholar 

  85. Zhao, C. E.; Wu, J. S.; Kjelleberg, S.; Loo, J. S. C.; Zhang, Q. C. Employing a flexible and low-cost polypyrrole nanotube membrane as an anode to enhance current generation in microbial fuel cells. Small 2015, 11, 3440–3443.

    Google Scholar 

  86. Wang, H. Y.; Wang, G. M.; Ling, Y. C.; Qian, F.; Song, Y.; Lu, X. H.; Chen, S. W.; Tong, Y. X.; Li, Y. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale 2013, 5, 10283–10290.

    Google Scholar 

  87. Yong, Y. C.; Dong, X. C.; Chan-Park, M. B.; Song, H.; Chen, P. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 2012, 6, 2394–2400.

    Google Scholar 

  88. Yuan, Y.; Zhou, S. G.; Zhao, B.; Zhuang, L.; Wang, Y. Q. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells. Bioresour. Technol. 2012, 116, 453–458.

    Google Scholar 

  89. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Google Scholar 

  90. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Google Scholar 

  91. Hu, C. G.; Zhang, Y. Y.; Bao, G.; Zhang, Y. L.; Liu, M. L.; Wang, Z. L. DNA functionalized single-walled carbon nanotubes for electrochemical detection. J. Phys. Chem. B 2005, 109, 20072–20076.

    Google Scholar 

  92. Martinková, N.; Nová, P.; Sablina, O. V.; Graphodatsky, A. S.; Zima, J. Karyotypic relationships of the Tatra vole (Microtus tatricus). Folia Zool. 2004, 53, 279–284.

    Google Scholar 

  93. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Google Scholar 

  94. Lee, S.; Eom, S. H.; Chung, J. S.; Hur, S. H. Large-scale production of high-quality reduced graphene oxide. Chem. Eng. J. 2013, 233, 297–304.

    Google Scholar 

  95. Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Google Scholar 

  96. Tamburri, E.; Orlanducci, S.; Toschi, F.; Terranova, M. L.; Passeri, D. Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synth. Met. 2009, 159, 406–414.

    Google Scholar 

  97. Wang, Y. X.; Li, S. L.; Liu, L. B.; Lv, F. T.; Wang, S. Conjugated polymer nanoparticles to augment photosynthesis of chloroplasts. Angew. Chem., Int. Ed. 2017, 56, 5308–5311.

    Google Scholar 

  98. Feng, L. H.; Liu, L. B.; Lv, F. T.; Bazan, G. C.; Wang, S. Preparation and biofunctionalization of multicolor conjugated polymer nanoparticles for imaging and detection of tumor cells. Adv. Mater. 2014, 26, 3926–3930.

    Google Scholar 

  99. Xie, J.; Zhao, C. E.; Lin, Z. Q.; Gu, P. Y.; Zhang, Q. C. Nanostructured conjugated polymers for energy-related applications beyond solar cells. Chem.—Asian J. 2016, 11, 1489–1511.

    Google Scholar 

  100. Li, C.; Zhang, L. B.; Ding, L. L.; Ren, H. Q.; Cui, H. Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosens. Bioelectron. 2011, 26, 4169–4176.

    Google Scholar 

  101. Kang, Y. L.; Ibrahim, S.; Pichiah, S. Synergetic effect of conductive polymer poly(3,4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresour. Technol. 2015, 189, 364–369.

    Google Scholar 

  102. Song, R. B.; Yan, K.; Lin, Z. Q.; Loo, J. S. C.; Pan, L. J.; Zhang, Q. C.; Zhang, J. R.; Zhu, J. J. Inkjet-printed porous polyaniline gel as an efficient anode for microbial fuel cells. J. Mater. Chem. A 2016, 4, 14555–14559.

    Google Scholar 

  103. Bombelli, P.; Zarrouati, M.; Thorne, R. J.; Schneider, K.; Rowden, S. J. L.; Ali, A.; Yunus, K.; Cameron, P. J.; Fisher, A. C.; Ian Wilson, D. et al. Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Phys. Chem. Chem. Phys. 2012, 14, 12221–12229.

    Google Scholar 

  104. Song, R. B.; Wu, Y. C.; Lin, Z. Q.; Xie, J.; Tan, C. H.; Loo, J. S. C.; Cao, B.; Zhang, J. R.; Zhu, J. J.; Zhang, Q. C. Living and conducting: Coating individual bacterial cells with in situ formed polypyrrole. Angew. Chem., Int. Ed. 2017, 56, 10516–10520.

    Google Scholar 

  105. Zajdel, T. J.; Baruch, M.; Méhes, G.; Stavrinidou, E.; Berggren, M.; Maharbiz, M. M.; Simon, D. T.; Ajo-Franklin, C. M. PEDOT: PSS-based multilayer bacterial-composite films for bioelectronics. Sci. Rep. 2018, 8, 15293.

    Google Scholar 

  106. Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 2009, 38, 185–196.

    Google Scholar 

  107. Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 2011, 3, 763–774.

    Google Scholar 

  108. Wraight, C. A.; Clayton, R. K. The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. Biochim. Biophys. ActaBioenerg. 1974, 333, 246–260.

    Google Scholar 

  109. Cho, H. M.; Mancino, L. J.; Blankenship, R. E. Light saturation curves and quantum yields in reaction centers from photosynthetic bacteria. Biophys. J. 1984, 45, 455–461.

    Google Scholar 

  110. Martin, W.; Kowallik, K. Annotated english translation of mereschkowsky’s 1905 paper “Über natur und ursprung der chromatophoren impflanzenreiche”. Eur. J. Phycol. 1999, 34, 287–295.

    Google Scholar 

  111. Raven, J. A.; Allen, J. F. Genomics and chloroplast evolution: What did cyanobacteria do for plants? Genome Biol. 2003, 4, 209.

    Google Scholar 

  112. Blankenship, R. E. Early evolution of photosynthesis. Plant Physiol. 2010, 154, 434–438.

    Google Scholar 

  113. Barber, J.; Tran, P. D. From natural to artificial photosynthesis. J. Roy. Soc. Interface 2013, 10, 20120984.

    Google Scholar 

  114. Gust, D.; Moore, T. A.; Moore, A. L. Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 2001, 34, 40–48.

    Google Scholar 

  115. Alharbi, F. H.; Kais, S. Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew. Sustain. Energy Rev. 2015, 43, 1073–1089.

    Google Scholar 

  116. Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809.

    Google Scholar 

  117. Kalyanasundaram, K.; Graetzel, M. Artificial photosynthesis: Biomimetic approaches to solar energy conversion and storage. Curr. Opin. Biotechnol. 2010, 21, 298–310.

    Google Scholar 

  118. Badura, A.; Kothe, T.; Schuhmann, W.; Rögner, M. Wiring photosynthetic enzymes to electrodes. Energy Environ. Sci. 2011, 4, 3263–3274.

    Google Scholar 

  119. Ham, M. H.; Choi, J. H.; Boghossian, A. A.; Jeng, E. S.; Graff, R. A.; Heller, D. A.; Chang, A. C.; Mattis, A.; Bayburt, T. H.; Grinkova, Y. V. et al. Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nat. Chem. 2010, 2, 929–936.

    Google Scholar 

  120. Milano, F.; Punzi, A.; Ragni, R.; Trotta, M.; Farinola, G. M. Photonics and optoelectronics with bacteria: Making materials from photosynthetic microorganisms. Adv. Funct. Mater. 2019, 29, 1805521.

    Google Scholar 

  121. McCormick, A. J.; Bombelli, P.; Scott, A. M.; Philips, A. J.; Smith, A. G.; Fisher, A. C.; Howe, C. J. Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ. Sci. 2011, 4, 4699–4709.

    Google Scholar 

  122. Wenzel, T.; Härtter, D.; Bombelli, P.; Howe, C. J.; Steiner, U. Porous translucent electrodes enhance current generation from photosynthetic biofilms. Nat. Commun. 2018, 9, 1299.

    Google Scholar 

  123. Sawa, M.; Fantuzzi, A.; Bombelli, P.; Howe, C. J.; Hellgardt, K.; Nixon, P. J. Electricity generation from digitally printed cyanobacteria. Nat. Commun. 2017, 8, 1327.

    Google Scholar 

  124. Operamolla, A.; Ragni, R.; Milano, F.; Roberto Tangorra, R.; Antonucci, A.; Agostiano, A.; Trotta, M.; Farinola, G “Garnishing” the photosynthetic bacterial reaction center for bioelectronics. J. Mater. Chem. C 2015, 3, 6471–6478.

    Google Scholar 

  125. Kim, Y.; Shin, S. A.; Lee, J.; Yang, K. D.; Nam, K. T. Hybrid system of semiconductor and photosynthetic protein. Nanotechnology 2014, 25, 342001.

    Google Scholar 

  126. Yaghoubi, H.; Li, Z.; Jun, D. L.; Saer, R.; Slota, J. E.; Beerbom, M.; Schlaf, R.; Madden, J. D.; Beatty, J. T.; Takshi, A. The role of gold-adsorbed photosynthetic reaction centers and redox mediators in the charge transfer and photocurrent generation in a bio-photoelectrochemical cell. J. Phys. Chem. C 2012, 116, 24868–24877.

    Google Scholar 

  127. Glowacki, E. D.; Tangorra, R. R.; Coskun, H.; Farka, D.; Operamolla, A.; Kanbur, Y.; Milano, F.; Giotta, L.; Farinola, G. M.; Sariciftci, N. S. Bioconjugation of hydrogen-bonded organic semiconductors with functional proteins. J. Mater. Chem. C 2015, 3, 6554–6564.

    Google Scholar 

  128. Mirkovic, T.; Ostroumov, E. E.; Anna, J. M.; van Grondelle, R.; Govindjee; Scholes, G. D. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 2017, 117, 249–293.

    Google Scholar 

  129. Govorov, A. O. Enhanced optical properties of a photosynthetic system conjugated with semiconductor nanoparticles: The role of förster transfer. Adv. Mater. 2008, 20, 4330–4335.

    Google Scholar 

  130. Cai, P.; Jia, Y.; Feng, X. Y.; Li, J.; Li, J. B. Assembly of CdTe quantum dots and photosystem II multilayer films with enhanced photocurrent. Chin. J. Chem. 2017, 35, 881–885.

    Google Scholar 

  131. Carmeli, I.; Lieberman, I.; Kraversky, L.; Fan, Z. Y.; Govorov, A. O.; Markovich, G.; Richter, S. Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas. Nano Lett. 2010, 10, 2069–2074.

    Google Scholar 

  132. Beyer, S. R.; Ullrich, S.; Kudera, S.; Gardiner, A. T.; Cogdell, R. J.; Köhler, J. Hybrid nanostructures for enhanced light-harvesting: Plasmon induced increase in fluorescence from individual photosynthetic pigment-protein complexes. Nano Lett. 2011, 11, 4897–4901.

    Google Scholar 

  133. Yehezkeli, O.; Tel-Vered, R.; Wasserman, J.; Trifonov, A.; Michaeli, D.; Nechushtai, R.; Willner, I. Integrated photosystem II-based photobioelectrochemical cells. Nat. Commun. 2012, 3, 742.

    Google Scholar 

  134. Lebedev, N.; Trammell, S. A.; Tsoi, S.; Spano, A.; Kim, J. H.; Xu, J.; Twigg, M. E.; Schnur, J. M. Increasing efficiency of photoelectronic conversion by encapsulation of photosynthetic reaction center proteins in arrayed carbon nanotube electrode. Langmuir 2008, 24, 8871–8876.

    Google Scholar 

  135. Edelman, M.; Mattoo, A. K. D1-protein dynamics in photosystem II: The lingering enigma. Photosynth. Res. 2008, 98, 609–620.

    Google Scholar 

  136. Scholes, G. D.; Sargent, E. H. Bioinspired materials: Boosting plant biology. Nat. Mater. 2014, 13, 329–331.

    Google Scholar 

  137. Heath, R. L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198.

    Google Scholar 

  138. Pradhan, S.; Patra, P.; Mitra, S.; Dey, K. K.; Basu, S.; Chandra, S.; Palit, P.; Goswami, A. Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicity response: A biophysical and biochemical outlook on Vigna radiata. J. Agric. Food Chem. 2015, 63, 2606–2617.

    Google Scholar 

  139. Faizan, M.; Faraz, A.; Yusuf, M.; Khan, S. T.; Hayat, S. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 2018, 56, 678–686.

    Google Scholar 

  140. Wu, H. H.; Tito, N.; Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 2017, 11, 11283–11297.

    Google Scholar 

  141. Wong, M. H.; Misra, R. P.; Giraldo, J. P.; Kwak, S. Y.; Son, Y.; Landry, M. P.; Swan, J. W.; Blankschtein, D.; Strano, M. S. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: A universal localization mechanism. Nano Lett. 2016, 16, 1161–1172.

    Google Scholar 

  142. Lew, T. T. S.; Wong, M. H.; Kwak, S. Y.; Sinclair, R.; Koman, V. B.; Strano, M. S. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 2018, 14, 1802086.

    Google Scholar 

  143. Antonucci, A.; Kupis-Rozmyslowicz, J.; Boghossian, A. A. Noncovalent protein and peptide functionalization of single-walled carbon nanotubes for biodelivery and optical sensing applications. ACS Appl. Mater. Interfaces 2017, 9, 11321–11331.

    Google Scholar 

  144. Sai, L. M.; Liu, S. Q.; Qian, X. X.; Yu, Y. H.; Xu, X. F. Nontoxic fluorescent carbon nanodot serving as a light conversion material in plant for UV light utilization. Colloids Surf. B Biointerfaces 2018, 169, 422–428.

    Google Scholar 

  145. Xu, Y. Q.; Fei, J. B.; Li, G. L.; Yuan, T. T.; Xu, X.; Wang, C. L.; Li, J. B. Optically matched semiconductor quantum dots improve photophosphorylation performed by chloroplasts. Angew. Chem., Int. Ed. 2018, 57, 6532–6535.

    Google Scholar 

  146. Pradhan, S.; Patra, P.; Das, S.; Chandra, S.; Mitra, S.; Dey, K. K.; Akbar, S.; Palit, P.; Goswami, A. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: A detailed molecular, biochemical, and biophysical study. Environ. Sci. Technol. 2013, 47, 13122–13131.

    Google Scholar 

  147. Marritt, S. J.; Lowe, T. G.; Bye, J.; McMillan, D. G G; Shi, L.; Fredrickson, J.; Zachara, J.; Richardson, D. J.; Cheesman, M. R.; Jeuken, L. J. C. et al. A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella. Biochem. J. 2012, 444, 465–474.

    Google Scholar 

  148. Hori, T.; Aoyagi, T.; Itoh, H.; Narihiro, T.; Oikawa, A.; Suzuki, K.; Ogata, A.; Friedrich, M. W.; Conrad, R.; Kamagata, Y. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Front. Microbiol. 2015, 6, 386.

    Google Scholar 

  149. Cologgi, D. L.; Lampa-Pastirk, S.; Speers, A. M.; Kelly, S. D.; Reguera, G. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc. Natl. Acad. Sci. USA 2011, 108, 15248–15252.

    Google Scholar 

  150. Belchik, S. M.; Kennedy, D. W.; Dohnalkova, A. C.; Wang, Y. M.; Sevinc, P. C.; Wu, H.; Lin, Y. H.; Lu, H. P.; Fredrickson, J. K.; Shi, L. Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 2011, 77, 4035–4041.

    Google Scholar 

  151. Wei, J. C.; Liang, P.; Huang, X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102, 9335–9344.

    Google Scholar 

  152. Bose, D.; Kandpal, V.; Dhawan, H.; Vijay, P.; Gopinath, M. Energy recovery with microbial fuel cells: Bioremediation and bioelectricity. In Waste Bioremediation; Varjani, S. J.; Gnansounou, E.; Gurunathan, B.; Pant, D.; Zakaria, Z. A., Eds.; Springer: Singapore, 2018; pp 7–33.

    Google Scholar 

  153. Light, S. H.; Su, L.; Rivera-Lugo, R.; Cornejo, J. A.; Louie, A.; Iavarone, A. T.; Ajo-Franklin, C. M.; Portnoy, D. A. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 2018, 562, 140–144.

    Google Scholar 

  154. You, L. X.; Liu, L. D.; Xiao, Y.; Dai, Y. F.; Chen, B. L.; Jiang, Y. X.; Zhao, F. Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1. Bioelectrochemistry 2018, 119, 196–202.

    Google Scholar 

  155. Deng, H.; Xue, H. J.; Zhong, W. H. A novel exoelectrogenic bacterium phylogenetically related to Clostridium sporogenes isolated from copper contaminated soil. Electroanalysis 2017, 29, 1294–1300.

    Google Scholar 

  156. Jiang, Z. H.; Zhang, Y. C.; Liu, Z. Z.; Ma, Y. M.; Kang, J. Q.; Liu, Y. Isolation and characterization of an exoelectrogenic strain CL-1 from soil and electron transfer mechanism by linking electrochemistry and spectroscopy. Electrochim. Acta 2018, 292, 982–989.

    Google Scholar 

  157. Koch, C.; Harnisch, F. Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 2016, 3, 1282–1295.

    Google Scholar 

  158. Stookey, L. L. Ferrozine—A new spectrophotometric reagent for iron. Anal. Chem. 1970, 42, 779–781.

    Google Scholar 

  159. Jensen, H. M.; TerAvest, M. A.; Kokish, M. G.; Ajo-Franklin, C. M. CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli. ACS Synth. Biol. 2016, 5, 679–688.

    Google Scholar 

  160. Xiao, X.; Liu, Q. Y.; Li, T. T.; Zhang, F.; Li, W. W.; Zhou, X. T.; Xu, M. Y.; Li, Q.; Yu, H. Q. A high-throughput dye-reducing photometric assay for evaluating microbial exoelectrogenic ability. Bioresour. Technol. 2017, 241, 743–749.

    Google Scholar 

  161. Liu, Y. N.; Zhang, F.; Li, J.; Li, D. B.; Liu, D. F.; Li, W. W.; Yu, H. Q. Exclusive extracellular bioreduction of methyl orange by Azo reductase-free Geobacter sulfurreducens. Environ. Sci. Technol. 2017, 51, 8616–8623.

    Google Scholar 

  162. Yuan, S. J.; Li, W. W.; Cheng, Y. Y.; He, H.; Chen, J. J.; Tong, Z. H.; Lin, Z. Q.; Zhang, F.; Sheng, G. P.; Yu, H. Q. A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria. Nat. Protoc. 2014, 9, 112–119.

    Google Scholar 

  163. Shi, L.; Squier, T. C.; Zachara, J. M.; Fredrickson, J. K. Respiration of metal (hydr)oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes. Mol. Microbiol. 2007, 65, 12–20.

    Google Scholar 

  164. Sturm-Richter, K.; Golitsch, F.; Sturm, G.; Kipf, E.; Dittrich, A.; Beblawy, S.; Kerzenmacher, S.; Gescher, J. Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresour. Technol. 2015, 186, 89–96.

    Google Scholar 

  165. Jensen, H. M.; Albers, A. E.; Malley, K. R.; Londer, Y. Y.; Cohen, B. E.; Helms, B. A.; Weigele, P.; Groves, J. T.; Ajo-Franklin, C. M. Engineering of a synthetic electron conduit in living cells. Proc. Natl. Acad. Sci. USA 2010, 107, 19213–19218.

    Google Scholar 

  166. Goldbeck, C. P.; Jensen, H. M.; Teravest, M. A.; Beedle, N.; Appling, Y.; Hepler, M.; Cambray, G.; Mutalik, V.; Angenent, L. T.; Ajo-Franklin, C. M. Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. ACS Synth. Biol. 2013, 2, 150–159.

    Google Scholar 

  167. Teravest, M. A.; Ajo-Franklin, C. M. Transforming exoelectrogens for biotechnology using synthetic biology. Biotechnol. Bioeng. 2016, 113, 687–697.

    Google Scholar 

  168. Shi, L.; Rosso, K. M.; Zachara, J. M.; Fredrickson, J. K. Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: A genomic perspective. Biochem. Soc. Trans. 2012, 40, 1261–1267.

    Google Scholar 

  169. Gao, H. C.; Barua, S.; Liang, Y. L.; Wu, L.; Dong, Y. Y.; Reed, S.; Chen, J. R.; Culley, D.; Kennedy, D.; Yang, Y. F. et al. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration. Microb. Biotechnol. 2010, 3, 455–466.

    Google Scholar 

  170. Myers, J. M.; Myers, C. R. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J. Bacteriol. 2000, 182, 67–75.

    Google Scholar 

  171. Fonseca, B. M.; Paquete, C. M.; Neto, S. E.; Pacheco, I.; Soares, C. M.; Louro, R. O. Mind the gap: Cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1. Biochem. J. 2013, 449, 101–108.

    Google Scholar 

  172. Sturm, G.; Richter, K.; Doetsch, A.; Heide, H.; Louro, R. O.; Gescher, J. A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME J. 2015, 9, 1802–1811.

    Google Scholar 

  173. Hartshorne, R. S.; Reardon, C. L.; Ross, D.; Nuester, J.; Clarke, T. A.; Gates, A. J.; Mills, P. C.; Fredrickson, J. K.; Zachara, J. M.; Shi, L. et al. Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl. Acad. Sci. USA 2009, 106, 22169–22174.

    Google Scholar 

  174. Shi, L.; Chen, B. W.; Wang, Z. M.; Elias, D. A.; Mayer, M. U.; Gorby, Y. A.; Ni, S.; Lower, B. H.; Kennedy, D. W.; Wunschel, D. S. et al. Isolation of a high-affinity functional protein complex between OmcA and MtrC: Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J. Bacteriol. 2006, 188, 4705–4714.

    Google Scholar 

  175. White, G. F.; Edwards, M. J.; Gomez-Perez, L.; Richardson, D. J.; Butt, J. N.; Clarke, T. A. Mechanisms of bacterial extracellular electron exchange. Adv. Microb. Physiol. 2016, 68, 87–138.

    Google Scholar 

  176. Coursolle, D.; Gralnick, J. A. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol. Microbiol. 2010, 77, 995–1008.

    Google Scholar 

  177. White, G. F.; Shi, Z.; Shi, L.; Wang, Z. M.; Dohnalkova, A. C.; Marshall, M. J.; Fredrickson, J. K.; Zachara, J. M.; Butt, J. N.; Richardson, D. J. et al. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proc. Natl. Acad. Sci. USA 2013, 110, 6346–6351.

    Google Scholar 

  178. Edwards, M. J.; White, G. F.; Lockwood, C. W.; Lawes, M. C.; Martel, A.; Harris, G.; Scott, D. J.; Richardson, D. J.; Butt, J. N.; Clarke, T. A. Structural modeling of an outer membrane electron conduit from a metal-reducing bacterium suggests electron transfer via periplasmic redox partners. J. Biol. Chem. 2018, 293, 8103–8112.

    Google Scholar 

  179. Blumberger, J. Electron transfer and transport through multi-heme proteins: Recent progress and future directions. Curr. Opin. Chem. Biol. 2018, 47, 24–31.

    Google Scholar 

  180. Lovley, D. R. Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ. Sci. 2011, 4, 4896–4906.

    Google Scholar 

  181. Summers, Z. M.; Fogarty, H. E.; Leang, C.; Franks, A. E.; Malvankar, N. S.; Lovley, D. R. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 2010, 330, 1413–1415.

    Google Scholar 

  182. Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, R. A.; Reed, S. B.; Romine, M. F.; Saffarini, D. A.; Shi, L. et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. USA 2014, 111, 12883–12888.

    Google Scholar 

  183. Gorgel, M.; Ulstrup, J. J.; Bøggild, A.; Jones, N. C.; Hoffmann, S. V.; Nissen, P.; Boesen, T. High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis. BMC Struct. Biol. 2015, 15, 4.

    Google Scholar 

  184. Gorby, Y. A.; Yanina, S.; McLean, J. S.; Rosso, K. M.; Moyles, D.; Dohnalkova, A.; Beveridge, T. J.; Chang, I. S.; Kim, B. H.; Kim, K. S. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 2006, 103, 11358–11363.

    Google Scholar 

  185. Sure, S.; Torriero, A. A. J.; Gaur, A.; Li, L. H.; Chen, Y.; Tripathi, C.; Adholeya, A.; Ackland, M. L.; Kochar, M. Inquisition of Microcystis aeruginosa and Synechocystis nanowires: Characterization and modelling. Antonie van Leeuwenhoek 2015, 108, 1213–1225.

    Google Scholar 

  186. Wang, F. B.; Gu, Y. Q.; O’Brien, J. P.; Yi, S. M.; Yalcin, S. E.; Srikanth, V.; Shen, C.; Vu, D.; Ing, N. L.; Hochbaum, A. I. et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell 2019, 177, 361–369.e10.

    Google Scholar 

  187. Reguera, G.; McCarthy, K. D.; Mehta, T.; Nicoll, J. S.; Tuominen, M. T.; Lovley, D. R. Extracellular electron transfer via microbial nanowires. Nature 2005, 435, 1098–1101.

    Google Scholar 

  188. Vargas, M.; Malvankar, N. S.; Tremblay, P. L.; Leang, C.; Smith, J. A.; Patel, P.; Synoeyenbos-West, O.; Nevin, K. P.; Lovley, D. R. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 2013, 4, e00105–13.

    Google Scholar 

  189. Tan, Y.; Adhikari, R. Y.; Malvankar, N. S.; Pi, S.; Ward, J. E.; Woodard, T. L.; Nevin, K. P.; Xia, Q. F.; Tuominen, M. T.; Lovley, D. R. Synthetic biological protein nanowires with high conductivity. Small 2016, 12, 4481–4485.

    Google Scholar 

  190. Feliciano, G. T.; Steidl, R. J.; Reguera, G. Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations. Phys. Chem. Chem. Phys. 2015, 17, 22217–22226.

    Google Scholar 

  191. Lampa-Pastirk, S.; Veazey, J. P.; Walsh, K. A.; Feliciano, G. T.; Steidl, R. J.; Tessmer, S. H.; Reguera, G. Thermally activated charge transport in microbial protein nanowires. Sci. Rep. 2016, 6, 23517.

    Google Scholar 

  192. Malvankar, N. S.; Vargas, M.; Nevin, K.; Tremblay, P. L.; Evans-Lutterodt, K.; Nykypanchuk, D.; Martz, E.; Tuominen, M. T.; Lovley, D. R. Structural basis for metallic-like conductivity in microbial nanowires. MBio 2015, 6, e00084.

    Google Scholar 

  193. Xiao, K.; Malvankar, N. S.; Shu, C. J.; Martz, E.; Lovley, D. R.; Sun, X. Low energy atomic models suggesting a pilus structure that could account for electrical conductivity of Geobacter sulfurreducens pili. Sci. Rep. 2016, 6, 23385.

    Google Scholar 

  194. Richter, L. V.; Sandler, S. J.; Weis, R. M. Two isoforms of Geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. J. Bacteriol. 2012, 194, 2551–2563.

    Google Scholar 

  195. Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 2008, 105, 3968–3973.

    Google Scholar 

  196. Kotloski, N. J.; Gralnick, J. A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio 2013, 4, e00553–12.

    Google Scholar 

  197. Yang, Y.; Ding, Y. Z.; Hu, Y. D.; Cao, B.; Rice, S. A.; Kjelleberg, S.; Song, H. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth. Biol. 2015, 4, 815–823.

    Google Scholar 

  198. Coursolle, D.; Baron, D. B.; Bond, D. R.; Gralnick, J. A. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J. Bacteriol. 2010, 192, 467–474.

    Google Scholar 

  199. Hasan, K.; Bekir Yildiz, H.; Sperling, E.; Conghaile, P. Ó.; Packer, M. A.; Leech, D.; Hägerhäll, C.; Gorton, L. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes. Phys. Chem. Chem. Phys. 2014, 16, 24676–24680.

    Google Scholar 

  200. Bombelli, P.; Bradley, R. W.; Scott, A. M.; Philips, A. J.; McCormick, A. J.; Cruz, S. M.; Anderson, A.; Yunus, K.; Bendall, D. S.; Cameron, P. J. et al. Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ. Sci. 2011, 4, 4690–4698.

    Google Scholar 

  201. Zhao, C. E.; Chen, J.; Ding, Y. Z.; Wang, V. B.; Bao, B. Q.; Kjelleberg, S.; Cao, B.; Loo, S. C. J.; Wang, L. H.; Huang, W. et al. Chemically functionalized conjugated oligoelectrolyte nanoparticles for enhancement of current generation in microbial fuel cells. ACS Appl. Mater. Interfaces 2015, 7, 14501–14505.

    Google Scholar 

  202. Yan, H. J.; Catania, C.; Bazan, G. C. Membrane-intercalating conjugated oligoelectrolytes: Impact on bioelectrochemical systems. Adv. Mater. 2015, 27, 2958–2973.

    Google Scholar 

  203. Hou, H. J.; Chen, X. F.; Thomas, A. W.; Catania, C.; Kirchhofer, N. D.; Garner, L. E.; Han, A.; Bazan, G. C. Conjugated oligoelectrolytes increase power generation in E. coli microbial fuel cells. Adv. Mater. 2013, 25, 1593–1597.

    Google Scholar 

  204. Kirchhofer, N. D.; Chen, X. F.; Marsili, E.; Sumner, J. J.; Dahlquist, F. W.; Bazan, G. C. The conjugated oligoelectrolyte DSSN+ enables exceptional coulombic efficiency via direct electron transfer for anode-respiring Shewanella oneidensis MR-1—A mechanistic study. Phys. Chem. Chem. Phys. 2014, 16, 20436–20443.

    Google Scholar 

  205. Wang, V. B.; Kirchhofer, N. D.; Chen, X. F.; Tan, M. Y. L.; Sivakumar, K.; Cao, B.; Zhang, Q. C.; Kjelleberg, S.; Bazan, G C.; Loo, S. C. J. et al. Comparison of flavins and a conjugated oligoelectrolyte in stimulating extracellular electron transport from Shewanella oneidensis MR-1. Electrochem. Commun. 2014, 41, 55–58.

    Google Scholar 

  206. Wang, V. B.; Du, J.; Chen, X. F.; Thomas, A. W.; Kirchhofer, N. D.; Garner, L. E.; Maw, M. T.; Poh, W. H.; Hinks, J.; Wuertz, S. et al. Improving charge collection in Escherichia coli-carbon electrode devices with conjugated oligoelectrolytes. Phys. Chem. Chem. Phys. 2013, 15, 5867–5872.

    Google Scholar 

  207. Logan, B. E.; Regan, J. M. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006, 14, 512–518.

    Google Scholar 

  208. Zou, Y. J.; Pisciotta, J.; Billmyre, R. B.; Baskakov, I. V.; Photosynthetic microbial fuel cells with positive light response. Biotechnol. Bioeng. 2009, 104, 939–946.

    Google Scholar 

  209. Schuergers, N.; Werlang, C.; Ajo-Franklin, C. M.; Boghossian, A. A. A synthetic biology approach to engineering living photovoltaics. Energy Environ. Sci. 2017, 10, 1102–1115.

    Google Scholar 

  210. Saper, G.; Kallmann, D.; Conzuelo, F.; Zhao, F. Y.; Tóth, T. N.; Liveanu, V.; Meir, S.; Szymanski, J.; Aharoni, A.; Schuhmann, W. et al. Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems. Nat. Commun. 2018, 9, 2168.

    Google Scholar 

  211. Chaudhuri, S. K.; Lovley, D. R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 2003, 21, 1229–1232.

    Google Scholar 

  212. Scott, K.; Rimbu, G. A.; Katuri, K. P.; Prasad, K. K.; Head, I. M. Application of modified carbon anodes in microbial fuel cells. Process Saf. Environ. Prot. 2007, 85, 481–488.

    Google Scholar 

  213. Yu, Y. Y.; Guo, C. X.; Yong, Y. C.; Li, C. M.; Song, H. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere 2015, 140, 26–33.

    Google Scholar 

  214. Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375–381.

    Google Scholar 

  215. Borole, A. P.; Aaron, D.; Hamilton, C. Y.; Tsouris, C. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy. Environ. Sci. Technol. 2010, 44, 2740–2745.

    Google Scholar 

  216. Hidalgo, D.; Tommasi, T.; Velayutham, K.; Ruggeri, B. Long term testing of microbial fuel cells: Comparison of different anode materials. Bioresour. Technol. 2016, 219, 37–44.

    Google Scholar 

  217. Gajda, I.; Greenman, J.; Santoro, C.; Serov, A.; Melhuish, C.; Atanassov, P.; Ieropoulos, I. A. Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode. Energy (Oxf) 2018, 144, 1073–1079.

    Google Scholar 

  218. Marsili, E.; Rollefson, J. B.; Baron, D. B.; Hozalski, R. M.; Bond, D. R. Microbial biofilm voltammetry: Direct electrochemical characterization of catalytic electrode-attached biofilms. Appl. Environ. Microbiol. 2008, 74, 7329–7337.

    Google Scholar 

  219. Liu, Y.; Harnisch, F.; Fricke, K.; Schröder, U.; Climent, V.; Feliu, J. M. The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosens. Bioelectron. 2010, 25, 2167–2171.

    Google Scholar 

  220. Deng, L.; Guo, S. J.; Liu, Z. J.; Zhou, M.; Li, D.; Liu, L.; Li, G. P.; Wang, E. K.; Dong, S. J. To boost c-type cytochrome wire efficiency of electrogenic bacteria with Fe3O4/Au nanocomposites. Chem. Commun. 2010, 46, 7172–7174.

    Google Scholar 

  221. Huang, Y. X.; Liu, X. W.; Xie, J. F.; Sheng, G. P.; Wang, G. Y.; Zhang, Y. Y.; Xu, A. W.; Yu, H. Q. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chem. Commun. 2011, 47, 5795–5797.

    Google Scholar 

  222. Zou, L.; Qiao, Y.; Wu, X. S.; Li, C. M. Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells. J. Power Sources 2016, 328, 143–150.

    Google Scholar 

  223. Tanaka, K.; Tamamushi, R.; Ogawa, T. Bioelectrochemical fuel-cells operated by the cyanobacterium, Anabaena variabilis. J. Chem. Technol. Biotechnol. Biotechnol. 1985, 35, 191–197.

    Google Scholar 

  224. Yokoo, R.; Hood, R. D.; Savage, D. F. Live-cell imaging of cyanobacteria. Photosynth. Res. 2015, 126, 33–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardemis A. Boghossian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouhib, M., Antonucci, A., Reggente, M. et al. Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials. Nano Res. 12, 2184–2199 (2019). https://doi.org/10.1007/s12274-019-2438-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2438-0

Keywords

Navigation