Skip to main content
Log in

Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The inert basal plane of molybdenum disulfide (MoS2) restrains its further hydrogen evolution reaction (HER) performance. This work attempts ion irradiation to activate inert basal plane of MoS2 nanosheet to improve its electrocatalytic performance. Experimental results demonstrate the sulphur vacancies generated by ion irradiation on the basal plane of MoS2 mainly boost the efficiency of HER performance. The moderate fluence of carbon ion irradiation gains the optimum HER performance with an onset potential of 77 mV and Tafel slope of 66 mV/dec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    Article  Google Scholar 

  2. Wang, H.; Gao, L. J. Recent developments in electrochemical hydrogen evolution reaction. Curr. Opin. Electrochem. 2018, 7, 7–14.

    Article  Google Scholar 

  3. Chou, S. W.; Lai, Y. R.; Yang, Y. Y.; Tang, C. Y.; Hayashi, M.; Chen, H. C.; Chen, H. L.; Chou, P. T. Uniform size and composition tuning of PtNi octahedra for systematic studies of oxygen reduction reactions. J. Catal. 2014, 309, 343–350.

    Article  Google Scholar 

  4. Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vazquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruña H. D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc. 2004, 126, 4043–1049.

    Article  Google Scholar 

  5. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

    Google Scholar 

  6. Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.

    Article  Google Scholar 

  7. Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933.

    Article  Google Scholar 

  8. Wang, H.; Ouyang, L. Y.; Zou, G. F.; Sun, C.; Hu, J.; Xiao, X.; Gao, L. J. Optimizing MoS2 edges by alloying isovalent W for robust hydrogen evolution activity. ACS Catal. 2018, 8, 9529–9536.

    Article  Google Scholar 

  9. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  Google Scholar 

  10. Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712.

    Article  Google Scholar 

  11. Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311–7317.

    Article  Google Scholar 

  12. Yin, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 738, 7965–7972.

    Article  Google Scholar 

  13. Yan, Y.; Xia, B. Y.; Xu, Z. C.; Wang, X. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal. 2014, 4, 1693–1705.

    Article  Google Scholar 

  14. Benson, J.; Li, M. X.; Wang, S. B.; Wang, P.; Papakonstantinou, P. Electrocatalytic hydrogen evolution reaction on edges of a few layer molybdenum disulfide nanodots. ACS Appl. Mater. Interfaces 2015, 7, 14113–14122.

    Article  Google Scholar 

  15. Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

    Article  Google Scholar 

  16. Yang, L.; Hong, H.; Fu, Q.; Huang, Y. F.; Zhang, J. Y.; Cui, X. D.; Fan, Z. Y.; Liu, K. H.; Xiang, B. Single-crystal atomic-layered molybdenum disulfide nanobelts with high surface activity. ACS Nano 2015, 9, 6478–6483.

    Article  Google Scholar 

  17. Huang, J. W.; Li, Y. R.; Xia, Y. F.; Zhu, J. T.; Yi, Q. H.; Wang, H.; Xiong, J.; Sun, Y. H.; Zou, G. F. Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values. Nano Res. 2017, 10, 1010–1020.

    Article  Google Scholar 

  18. Wang, H.; Cao, Y. J.; Sun, C.; Zou, G. F.; Huang, J. W.; Kuai, X. X.; Zhao, J. Q.; Gao, L. J. Strongly coupled molybdenum carbide on carbon sheets as a bifunctional electrocatalyst for overall water splitting. ChemSusChem 2017, 10, 3540–3546.

    Article  Google Scholar 

  19. Wang, H.; Sun, C.; Cao, Y. J.; Zhu, J. T.; Chen, Y.; Guo, J.; Zhao, J.; Sun, Y. H.; Zou, G. F. Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions. Carbon 2017, 774, 628–634.

    Article  Google Scholar 

  20. Xia, Y. F.; Huang, J. W.; Wu, W. Q.; Zhang, Y. D.; Wang, H.; Zhu, J. T.; Yao, J. J.; Xu, L.; Sun, Y. H.; Zhang, L. et al. Sulfur-doped rhenium selenide vertical nanosheets: A high-performance electrocatalyst for hydrogen evolution. ChemCatChem 2018, 70, 4424–4430.

    Article  Google Scholar 

  21. Liu, H. W.; Liang, S. P.; Wu, T. J.; Chang, H. M.; Kao, P. K.; Hsu, C. C.; Chen, J. Z.; Chou, P. T.; Cheng, I. C. Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2014, 6, 15105–15112.

    Article  Google Scholar 

  22. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Contryman, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    Article  Google Scholar 

  23. Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

    Article  Google Scholar 

  24. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Norskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Article  Google Scholar 

  25. Gómez-Navarro, C.; De Pablo, P. J.; Gómez-Herrero, J.; Biel, B.; Garcia-Vidal, F. J.; Rubio, A.; Flores, F. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat. Mater. 2005, 4, 534–539.

    Article  Google Scholar 

  26. Ogata, T.; Teshima, T.; Inaoka, M.; Minami, K.; Tsuchiya, T.; Isono, M.; Furusawa, Y.; Matsuura, N. Carbon ion irradiation suppresses metastatic potential of human non-small cell lung cancer A549 cells through the phosphatidylinositol-3-kinase/Akt signaling pathway. J. Radiat. Res. 2011, 52, 374–379.

    Article  Google Scholar 

  27. Wang, Z. X.; Yu, L. P.; Zhang, W.; Ding, Y. F.; Li, Y. L.; Han, J. G.; Zhu, Z. Y.; Xu, H. J.; He, G. W.; Chen, Y.; Hu, G. Amorphous molecular junctions produced by ion irradiation on carbon nanotubes. Phys. Lett. A 2004, 324, 321–325.

    Article  Google Scholar 

  28. Sun, Y. J.; Liang, Y. X.; Luo, M. C.; Lv, F.; Qin, Y. N.; Wang, L.; Xu, C.; Fu, E. G.; Gu, S. J. Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small 2018, 74, 1702259.

    Article  Google Scholar 

  29. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 77, 5111–5116.

    Article  Google Scholar 

  30. Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 73, 1128–1134.

    Article  Google Scholar 

  31. Chen, Y.; Huang, S. X.; Ji, X.; Adepall, K.; Yin, K. D.; Ling, X.; Wang, X. W.; Xue, J. M.; Dresselhaus, M.; Kong, J. et al. Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS Nano 2018, 12, 2569–2579.

    Article  Google Scholar 

  32. Hansen, N.; Huang, X. Microstructure and flow stress of polycrystals and single crystals. Acta Mater. 1998, 46, 1827–1836.

    Article  Google Scholar 

  33. Conway, B. E.; Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 2002, 47, 3571–3594.

    Article  Google Scholar 

  34. Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.

    Article  Google Scholar 

  35. Yu, Y. F.; Huang, S. Y.; Li, Y. P.; Steinmann, S. N.; Yang, W. T.; Cao, L. Y. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014, 74, 553–558.

    Article  Google Scholar 

  36. Li, Y.; Yin, K.; Wang, L. L.; Lu, X. L.; Zhang, Y. Q.; Liu, Y. T.; Yan, D. F.; Song, Y. Z.; Luo, S. L. Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction. Appl. Catal. B: Environ. 2018, 239, 537–544.

    Article  Google Scholar 

  37. Madauß, L.; Zegkinoglou, I.; Muiños, H. V.; Choi, Y. W.; Kunze, S.; Zhao, M. Q.; Naylor, C. H.; Ernst, P.; Pollmann, E.; Ochedowski, O. et al. Highly active single-layer MoS2 catalysts synthesized by swift heavy ion irradiation. Nanoscale 2018, 10, 22908–22916.

    Article  Google Scholar 

  38. Park, S.; Park, J.; Abroshan, H.; Zhang, L.; Kim, J. K.; Zhang, J. M.; Guo, J. H.; Siahrostami, S.; Zheng, X. L. Enhancing catalytic activity of MoS2 basal plane S-vacancy by Co cluster addition. ACS Energy Lett. 2018, 3, 2685–2693.

    Article  Google Scholar 

  39. Yan, Y.; Ge, X. M.; Liu, Z. L.; Wang, J. Y.; Lee, J. M.; Wang, X. Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale 2013, 5, 7768–7771.

    Article  Google Scholar 

  40. Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515–2525.

    Article  Google Scholar 

  41. Huang, J. W.; Sun, Y. H.; Zhang, Y. D.; Zou, G. F.; Yan, C. Y.; Cong, S.; Lei, T. Y.; Dai, X.; Guo, J.; Lu, R. F. et al. A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation. Adv. Mater. 2018, 30, 1705045.

    Article  Google Scholar 

  42. González, J. R.; Alcántara, R.; Tirado, J. L.; Fielding, A. J.; Dryfe, R. A. W. Electrochemical interaction of few-layer molybdenum disulfide composites vs sodium: New insights on the reaction mechanism. Chem. Mater. 2017, 29, 5886–5895.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the National Natural Science Foundation of China (Nos. 21671141, 11375018 and 11528508), the National Basic Research Program of China (No. 2015CB358600), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions for Optical Engineering in Soochow University, the National Magnetic Confinement Fusion Energy Research Project (Nos. 2015GB121004, 2017YFE0302500 and 2018YFE0307100) from Ministry of Science and Technology of China, China-Romania Science and Technology Cooperation committee 43rd Regular Meeting Exchange program and Ion Beam Materials Laboratory (IBML) at Peking University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Engang Fu or Guifu Zou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Wang, P., Wang, H. et al. Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Res. 12, 1613–1618 (2019). https://doi.org/10.1007/s12274-019-2400-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2400-1

Keywords

Navigation