Skip to main content
Log in

Photoluminescence of Ag-In-S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cd-free I-III-VI group semiconductor quantum dots (QDs) like Ag-In-S and Cu-In-S show unstructured absorption spectra with a pronounced Urbach tail, rendering the determination of their band gap energy (Eg) and the energy structure of the exciton difficult. Additionally, the origin of the broad photoluminescence (PL) band with lifetimes of several hundred nanoseconds is still debated. This encouraged us to study the excitation energy dependence (EED) of the PL maxima, PL spectral band widths, quantum yields (QYs), and decay kinetics of AIS/ZnS QDs of different size, composition, and surface capping ligands. These results were then correlated with the second derivatives of the corresponding absorption spectra. The excellent match between the onset of changes in PL band position and spectral width with the minima found for the second derivatives of the absorption spectra underlines the potential of the EED approach for deriving Eg values of these ternary QDs from PL data. The PL QY is, however, independent of excitation energy in the energy range studied. From the EED of the PL features of the AIS/ZnS QDs we could also derive a mechanism of the formation of the low-energy electronic structure. This was additionally confirmed by a comparison of the EED of PL data of as-synthesized and size-selected QD ensembles and the comparison of these PL data with PL spectra of single QDs. These results indicate a strong contribution of intrinsic inhomogeneous PL broadening to the overall emission features of AIS/ZnS QDs originating from radiative transitions from a set of energy states of defects localized at different positions within the quantum dot volume, in addition to contributions from dimensional and chemical broadening. This mechanism was confirmed by numerically modelling the absorption and PL energies with a simple mass approximation for spherical QDs and a modified donor-acceptor model, thereby utilizing the advantages of previously proposed PL mechanisms of ternary QDs. These findings will pave the road to a deeper understanding of the nature of PL in quantum confined I-III-VI group semiconductor nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Girma, W. M.; Fahmi, M. Z.; Permadi, A.; Abate, M. A.; Chang, J. Y. Synthetic strategies and biomedical applications of I-III-VI ternary quantum dots. J. Mater. Chem. B 2017, 5, 6193–6216.

    Article  Google Scholar 

  2. Coughlan, C.; Ibáñez, M.; Dobrozhan, O.; Singh, A.; Cabot, A.; Ryan, K. M. Compound copper chalcogenide nanocrystals. Chem. Rev. 2017, 117, 5865–6109.

    Article  Google Scholar 

  3. Kolny-Olesiak, J.; Weller, H. Synthesis and application of colloidal CuinS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 2013, 5, 12221–12237.

    Article  Google Scholar 

  4. Torimoto, T.; Kameyama, T.; Kuwabata, S. Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions. J. Phys. Chem. Lett. 2014, 5, 336–347.

    Article  Google Scholar 

  5. Thomas, S. R.; Chen, C. W.; Date, M.; Wang, Y. C.; Tsai, H. W.; Wang, Z. M.; Chueh, Y. L. Recent developments in the synthesis of nanostructured chalcopyrite materials and their applications: A review. RSC Adv. 2016, 6, 60643–60656.

    Article  Google Scholar 

  6. Xu, G. X.; Zeng, S. W.; Zhang, B. T.; Swihart, M. T.; Yong, K. T.; Prasad, P. N. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 2016, 116, 12234–12327.

    Article  Google Scholar 

  7. Bai, X.; Purcell-Milton, F.; Gun’ko, Y. K. Optical properties, synthesis, and potential applications of Cu-based ternary or quaternary anisotropic quantum dots, polytypic nanocrystals, and core/shell heterostructures. Nanomaterials 2019, 9, 85.

    Article  Google Scholar 

  8. Nagamine, G.; Nunciaroni, H. B.; McDaniel, H.; Efros, A. L.; de Brito Cruz, C. H.; Padilha, L. A. Evidence of band-edge hole levels inversion in spherical CuInS2 quantum dots. Nano Lett. 2018, 18, 6353–6359.

    Article  Google Scholar 

  9. Mansur, A. A. P.; Mansur, H. S.; Tabare, C.; Paiva, A.; Capanema, N. S. V. Eco-friendly AgInS2/ZnS quantum dot nanohybrids with tunable luminescent properties modulated by pH-sensitive biopolymer for potential solar energy harvesting applications. J. Mater. Sci.: Mater. Electron. 2019, doi: https://doi.org/10.1007/s10854-019-00719-0.

    Google Scholar 

  10. Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.

    Article  Google Scholar 

  11. Martynenko, I. V.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Berwick, K.; Baranov, A. V. The influence of phthalocyanine aggregation in complexes with CdSe/ZnS quantum dots on the photophysical properties of the complexes. Beilstein J. Nanotechnol. 2016, 7, 1018–1027.

    Article  Google Scholar 

  12. Visheratina, A. K.; Martynenko, I. V.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Baranov, A. V.; Gun’ko, Y. K. Investigation of biocompatible complexes of Mn2+-doped ZnS quantum dots with chlorin e6. J. Opt. Technol. 2014, 81, 444–448.

    Article  Google Scholar 

  13. Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun’ko, Y. K.; Baranov, A. V. Enantioselective cellular uptake of chiral semiconductor nanocrystals. Nanotechnology 2016, 27, 075102.

    Article  Google Scholar 

  14. Regulacio, M. D.; Win, K. Y.; Lo, S. L.; Zhang, S. Y.; Zhang, X. H.; Wang, S.; Han, M. Y.; Zheng, Y. G. Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications. Nanoscale 2013, 5, 2322–2327.

    Article  Google Scholar 

  15. Luo, Z. S.; Zhang, H.; Huang, J.; Zhong, X. H. One-step synthesis of water-soluble AgInS2 and ZnS-AgInS2 composite nanocrystals and their photocatalytic activities. J. Colloid Interface Sci. 2012, 377, 27–33.

    Article  Google Scholar 

  16. Raevskaya, A.; Lesnyak, V.; Haubold, D.; Dzhagan, V.; Stroyuk, O.; Gaponik, N.; Zahn, D. R. T.; Eychmüller, A. A fine size selection of brightly luminescent water-soluble Ag-In-S and Ag-In-S/ZnS quantum dots. J. Phys. Chem. C 2017, 121, 9032–9042.

    Article  Google Scholar 

  17. Regulacio, M. D.; Han, M. Y. Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 2016, 49, 511–519.

    Article  Google Scholar 

  18. Litvin, A. P.; Martynenko, I. V.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun’ko, Y. K. Colloidal quantum dots for optoelectronics. J. Mater. Chem. A 2017, 5, 13252–13275.

    Article  Google Scholar 

  19. Martynenko, I. V.; Litvin, A. P.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun’ko, Y. K. Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 2017, 5, 6701–6727.

    Article  Google Scholar 

  20. Stroyuk, O.; Raevskaya, A.; Spranger, F.; Selyshchev, O.; Dzhagan, V.; Schulze, S.; Zahn, D. R. T.; Eychmüller, A. Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag-In-S quantum dots. J. Phys. Chem. C 2018, 122, 13648–13658.

    Article  Google Scholar 

  21. Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

    Article  Google Scholar 

  22. Kadlag, K. P.; Patil, P.; Jagadeeswara Rao, M.; Datta, S.; Nag, A. Luminescence and solar cell from ligand-free colloidal AgInS2 nanocrystals. CrystEngComm 2014, 16, 3605–3612.

    Article  Google Scholar 

  23. Cichy, B.; Rich, R.; Olejniczak, A.; Gryczynski, Z.; Strek, W. Two blinking mechanisms in highly confined AgInS2 and AgInS2/ZnS quantum dots evaluated by single particle spectroscopy. Nanoscale 2016, 8, 4151–4159.

    Article  Google Scholar 

  24. Torimoto, T.; Tada, M.; Dai, M. L.; Kameyama, T.; Suzuki, S.; Kuwabata, S. Tunable photoelectrochemical properties of chalcopyrite AgInS2 nanoparticles size-controlled with a photoetching technique. J. Phys. Chem. C 2012, 116, 21895–21902.

    Article  Google Scholar 

  25. Jeong, S.; Yoon, H. C.; Han, N. S.; Oh, J. H.; Park, S. M.; Min, B. K.; Do, Y. R.; Song, J. K. band-gap states of AgIn5S8 and ZnS-AgIn5S8 nanoparticles. J. Phys. Chem. C 2017, 121, 3149–3155.

    Article  Google Scholar 

  26. Mao, B. D.; Chuang, C. H.; McCleese, C.; Zhu, J. J.; Burda, C. Near-infrared emitting AgInS2/ZnS nanocrystals. J. Phys. Chem. C 2014, 118, 13883–13889.

    Article  Google Scholar 

  27. Yarema, M.; Pichler, S.; Sytnyk, M.; Seyrkammer, R.; Lechner, R. T.; Fritz-Popovski, G.; Jarzab, D.; Szendrei, K.; Resel, R.; Korovyanko, O. et al. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 2011, 5, 3758–3765.

    Article  Google Scholar 

  28. Huxter, V. M.; Mirkovic, T.; Nair, P. S.; Scholes, G. D. Demonstration of bulk semiconductor optical properties in processable Ag2S and EuS nanocrystalline systems. Adv. Mater. 2008, 20, 2439–2443.

    Article  Google Scholar 

  29. Song, J.; Ma, C.; Zhang, W. Z.; Li, X. D.; Zhang, W. T.; Wu, R. B.; Cheng, X. C.; Ali, A.; Yang, M. Y.; Zhu, L. X. et al. Bandgap and structure engineering via cation exchange: From binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging. ACS Appl. Mater. Interfaces 2016, 8, 24826–24836.

    Article  Google Scholar 

  30. Leach, A. D. P.; Macdonald, J. E. Optoelectronic properties of CuInS2 nanocrystals and their origin. J. Phys. Chem. Lett. 2016, 7, 572–583.

    Article  Google Scholar 

  31. Hamanaka, Y.; Ogawa, T.; Tsuzuki, M.; Kuzuya, T. Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J. Phys. Chem. C 2011, 115, 1786–1792.

    Article  Google Scholar 

  32. Sun, J. H.; Ikezawa, M.; Wang, X. Y.; Jing, P. T.; Li, H. B.; Zhao, J. L.; Masumoto, Y. Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots. Phys. Chem. Chem. Phys. 2015, 17, 11981–11989.

    Article  Google Scholar 

  33. Whitham, P. J.; Marchioro, A.; Knowles, K. E.; Kilburn, T. B.; Reid, P. J.; Gamelin, D. R. Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals. J. Phys. Chem. C 2016, 120, 17136–17142.

    Article  Google Scholar 

  34. Fuhr, A. S.; Yun, H. J.; Makarov, N. S.; Li, H. B.; McDaniel, H.; Klimov, V. I. Light emission mechanisms in CuInS2 quantum dots evaluated by spectral electrochemistry. ACS Photonics 2017, 4, 2425–2435.

    Article  Google Scholar 

  35. Pinchetti, V.; Lorenzon, M.; McDaniel, H.; Lorenzi, R.; Meinardi, F.; Klimov, V. I.; Brovelli, S. Spectro-electrochemical probing of intrinsic and extrinsic processes in exciton recombination in I-III-VI2 nanocrystals. Nano Lett. 2017, 17, 4508–4517.

    Article  Google Scholar 

  36. Zang, H. D.; Li, H. B.; Makarov, N. S.; Velizhanin, K. A.; Wu, K. F.; Park, Y. S.; Klimov, V. I. Thick-shell CuInS2/ZnS quantum dots with suppressed “Blinking” and narrow single-particle emission line widths. Nano Lett. 2017, 17, 1787–1795.

    Article  Google Scholar 

  37. Hamanaka, Y.; Ozawa, K.; Kuzuya, T. Enhancement of donor-acceptor pair emissions in colloidal AgInS2 quantum dots with high concentrations of defects. J. Phys. Chem. C 2014, 118, 14562–14568.

    Article  Google Scholar 

  38. Chevallier, T.; Benayad, A.; Le Blevennec, G.; Chandezon, F. Method to determine radiative and non-radiative defects applied to AgInS2-ZnS luminescent nanocrystals. Phys. Chem. Chem. Phys. 2017, 19, 2359–2363.

    Article  Google Scholar 

  39. Hattori, K.; Akamatsu, K.; Kamegashira, N. Electrical properties of poly-crystalline chalcopyrite AgInS2 films. J. Appl. Phys. 1992, 71, 3414–3418.

    Article  Google Scholar 

  40. You, S. H.; Hong, K. J.; Youn, C. J.; Jeong, T. S.; Moon, J. D.; Kim, H. S.; Park, J. S. Origin of point defects in AgInS2/GaAs epilayer obtained from photoluminescence measurement. J. Appl. Phys. 2001, 90, 3894–3898.

    Article  Google Scholar 

  41. Dai, M. L.; Ogawa, S.; Kameyama, T.; Okazaki, K. I.; Kudo, A.; Kuwabata, S.; Tsuboi, Y.; Torimoto, T. Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles. J. Mater. Chem. 2012, 22, 12851–12858.

    Article  Google Scholar 

  42. Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1−x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. Am. Chem. Soc. 2004, 126, 13406–13413.

    Article  Google Scholar 

  43. Mao, B.; Chuang, C. H.; Wang, J.; Burda, C. Synthesis and photophysical properties of ternary I-III-VI AgInS2 nanocrystals: Intrinsic versus surface states. J. Phys. Chem. C 2011, 115, 8945–8954.

    Article  Google Scholar 

  44. Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 2013, 8, 1535–1550.

    Article  Google Scholar 

  45. Resch-Genger, U.; DeRose, P. C. Characterization of photoluminescence measuring systems (IUPAC Technical Report). Pure Appl. Chem., 2012, 84, 1815–1835.

    Article  Google Scholar 

  46. Park, Y. J.; Oh, J. H.; Han, N. S.; Yoon, H. C.; Park, S. M.; Do, Y. R.; Song, J. K. Photoluminescence of band gap states in AgInS2 nanoparticles. J. Phys. Chem. C 2014, 118, 25677–25683.

    Article  Google Scholar 

  47. Martynenko, I. V.; Baimuratov, A. S.; Osipova, V. A.; Kuznetsova, V. A.; Purcell-Milton, F.; Rukhlenko, I. D.; Fedorov, A. V.; Gun’ko, Y. K.; Resch-Genger, U.; Baranov, A. V. Excitation energy dependence of the photoluminescence quantum yield of core/shell CdSe/CdS quantum dots and correlation with circular dichroism. Chem. Mater. 2018, 30, 465–471.

    Article  Google Scholar 

  48. Hoy, J.; Morrison, P. J.; Steinberg, L. K.; Buhro, W. E.; Loomis, R. A. Excitation energy dependence of the photoluminescence quantum yields of core and core/shell quantum dots. J. Phys. Chem. Lett. 2013, 4, 2053–2060.

    Article  Google Scholar 

  49. von Borczyskowski, C.; Zenkevich, E. Tuning Semiconducting and Metallic Quantum Dots: Spectroscopy and Dynamics; Jenny Stanford Publishing: New York, 2016.

    Google Scholar 

  50. Flagan, R. C. Continuous-flow differential mobility analysis of nanoparticles and biomolecules. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 255–279.

    Article  Google Scholar 

  51. Guha, S.; Li, M. D.; Tarlov, M. J.; Zachariah, M. R. Electrospray-differential mobility analysis of bionanoparticles. Trends Biotechnol. 2012, 30, 291–300.

    Article  Google Scholar 

  52. Stroyuk, O.; Weigert, F.; Raevskaya, A.; Spranger, F.; Würth, C.; Resch-Genger, U.; Gaponik, N.; Zahn, D. R. T. Inherently broadband photoluminescence in Ag-In-S/ZnS quantum dots observed in ensemble and single-particle studies. J. Phys. Chem. C 2019, 123, 2632–2641.

    Article  Google Scholar 

  53. Knowles, K. E.; Nelson, H. D.; Kilburn, T. B.; Gamelin, D. R. Singlet-triplet splittings in the luminescent excited states of colloidal Cu+: CdSe, Cu+: InP, and CuInS2 nanocrystals: Charge-transfer configurations and self-trapped excitons. J. Am. Chem. Soc. 2015, 137, 13138–13147.

    Article  Google Scholar 

  54. van der Stam, W.; Berends, A. C.; de Mello Donega, C. Prospects of colloidal copper chalcogenide nanocrystals. ChemPhysChem 2016, 17, 559–581.

    Article  Google Scholar 

  55. Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

    Article  Google Scholar 

  56. Padilha, L. A.; Bae, W. K.; Klimov, V. I.; Pietryga, J. M.; Schaller, R. D. Response of semiconductor nanocrystals to extremely energetic excitation. Nano Lett. 2013, 13, 925–932.

    Article  Google Scholar 

  57. Baimuratov, A. S.; Rukhlenko, I. D.; Turkov, V. K.; Ponomareva, I. O.; Leonov, M. Y.; Perova, T. S.; Berwick, K.; Baranov, A. V.; Fedorov, A. V. Level anticrossing of impurity states in semiconductor nanocrystals. Sci. Rep. 2014, 4, 6917.

    Article  Google Scholar 

  58. Li, B.; Brosseau, P. J.; Strandell, D. P.; Mack, T. G.; Kambhampati, P. Photophysical action spectra of emission from semiconductor nanocrystals reveal violations to the vavilov rule behavior from hot carrier effects. J. Phys. Chem. C 2019, 123, 5092–5098.

    Article  Google Scholar 

Download references

Acknowledgements

U. Resch-Genger gratefully acknowledges financial support from the grants RE1203/17-1 (M-Eranet project ICENAP; financial support of F. Weigert) and RE1203/12-3 (financial support of L. Dhamo) from the German Research Council (DFG). A. Baimuratov, I. Rukhlenko and A. Baranov gratefully acknowledge support from the Federal Target Program for Research and Development of the Ministry of Science and Higher Education of the Russian Federation (No. 14.587.21.0047, project identifier RFMEFI58718X0047). I. Martynenko acknowledges support from an Adolf-Martens fellowship granted by BAM. The authors gratefully acknowledge fruitful discussions with J. Santos, University of Porto and performance of first DMA measurements by A. Schmidt, BAM (Division 4.2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irina V. Martynenko, Alexander V. Baranov or Ute Resch-Genger.

Additional information

Conflicts of interest

There are no conflicts to declare.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynenko, I.V., Baimuratov, A.S., Weigert, F. et al. Photoluminescence of Ag-In-S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure. Nano Res. 12, 1595–1603 (2019). https://doi.org/10.1007/s12274-019-2398-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2398-4

Keywords

Navigation