Skip to main content
Log in

Structural, luminescence and optoelectronic properties of the In1−xAcxAs quantum dots prepared using mercaptoacetic acid-assisted colloidal technique for photodiode applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fluorescent nanoscale semiconducting crystals, that are called quantum dots, have shown great significance in quantum optics because of their optoelectronic features owing to their propensity to divulge photoluminescence with controllable wavelength depending on the mean size of these nanostructures. Here, we report for the first time the synthesis of water-soluble In1−xAcxAs QD using the mercaptoacetic acid-assisted colloidal technique. The impact of the actinium (Ac) doping on the lattice structures of indium arsenide (InAs) nanocrystals was examined. The Ac-dopant expanded the InAs cubic crystals from 0.653 nm to 0.665 nm. The elemental composition and oxidation states of the In1−xAcxAs QD were studied using the XPS measurements. The Raman measurements inspect the ability of Ac doping to change the longitudinal optical and transverse optical phonon vibrational modes. The Ac doping decreased the bandgap from 1.53 to 1.32 eV and increased the emission intensities through a wide range of wavelengths by 12-fold. The Ac dopant was found to raise the quantum yield of the InAs to 85% and produce highly fluorescent light with a narrow bandwidth because of the ability of Ac doping to passivate the surface defects of the InAs QDs. The optoelectronic characteristics of the fabricated Ag/n-si/In1−xAcxAs/Ag photodiodes indicated these photodiodes have a fast response towards incident light photons and revealed high stability and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available in reasonable request.

References

  1. H. Van Ryswyk et al., J. Chem. Edu. 100(5), 2021–2026 (2023)

    Google Scholar 

  2. A. Alshahrie et al., Micro Nanostruct. 164, 107115 (2022)

    Google Scholar 

  3. A. Alshahrie et al., Phys. B 626, 413575 (2022)

    CAS  Google Scholar 

  4. W.E. Mahmoud, Micro Nanostruct. 169, 207340 (2022)

    CAS  Google Scholar 

  5. A.M. Al-Harthi et al., Mater. Lett. 304, 130719 (2021)

    CAS  Google Scholar 

  6. L.A.M. Al-Sagheer et al., Colloids Surf. A 618, 126394 (2021)

    CAS  Google Scholar 

  7. S.H. Gage et al., Langmuir 29(1), 466–473 (2013)

    CAS  Google Scholar 

  8. W.E. Mahmoud, A.A. Al-Ghamdi, Y.A. Al-Turki, A.M. Al-Amri, Ceram. Int. 48(11), 15082–15089 (2022)

    CAS  Google Scholar 

  9. N.V. Kuchkina et al., Macromolecules 46(15), 5890–5898 (2013)

    CAS  Google Scholar 

  10. K.L. Mathews et al., J. Mater. Chem. A 1(4), 1108–1116 (2013)

    CAS  Google Scholar 

  11. A. Alshahrie et al., Ceram. Int. 45(6), 7984–7994 (2019)

    CAS  Google Scholar 

  12. W.E. Mahmoud, Ceram. Int. 47(21), 30888–30894 (2021)

    CAS  Google Scholar 

  13. W.E. Mahmoud et al., Polym. Degrad. Stab. 92(11), 2011–2015 (2007)

    CAS  Google Scholar 

  14. W.E. Mahmoud, Polym. Adv. Technol. 22(12), 2550–2555 (2011)

    CAS  Google Scholar 

  15. A. Fahami et al., J. Alloy. Compd. 683, 100–107 (2016)

    CAS  Google Scholar 

  16. R. Easterday et al., ACS Appl. Mater. Interfaces 6(23), 21652–21660 (2014)

    CAS  Google Scholar 

  17. H.A. Al-Khanbashi et al., Ceram. Int. 40, 1927–1932 (2014)

    CAS  Google Scholar 

  18. F.S. Al-Hazmi et al., J. Mol. Struct. 1118, 275–278 (2016)

    CAS  Google Scholar 

  19. F.A. Al-Agel et al., J. Appl. Crystallogr. 45(5), 921–925 (2012)

    CAS  Google Scholar 

  20. W.E. Mahmoud et al., J. Appl. Crystallogr. 45(2), 182–185 (2012)

    CAS  Google Scholar 

  21. W.E. Mahmoud, Ceram. Int. 47(17), 23781–23787 (2021)

    CAS  Google Scholar 

  22. W.E. Mahmoud, J. Eur. Ceram. Soc. 41(12), 5977–5980 (2021)

    CAS  Google Scholar 

  23. W.E. Mahmoud et al., J. Eur. Ceram. Soc. 32(13), 3537–3541 (2012)

    CAS  Google Scholar 

  24. F.S. Al-Hazmi et al., J. Eur. Ceram. Soc. 34(12), 3047–3050 (2014)

    CAS  Google Scholar 

  25. M. Marradi et al., Imag. Therap. Applic. 11, 433–472 (2021)

    Google Scholar 

  26. M. Parvizian et al., J. Chem. Edu. 100(4), 1613–1620 (2023)

    CAS  Google Scholar 

  27. G. Lisensky et al., J. Chem. Edu. 97(3), 806–812 (2023)

    Google Scholar 

  28. S. Karmakar et al., ACS Appl. Bio Mater. 3(12), 8820–8829 (2020)

    CAS  Google Scholar 

  29. A.M. Al-Amri et al., J. Cryst. Growth 334(1), 76–79 (2011)

    CAS  Google Scholar 

  30. W.E. Mahmoud et al., J. Alloy. Compd. 640, 122–127 (2015)

    CAS  Google Scholar 

  31. W.E. Mahmoud et al., J. Phys. Chem. Solids 72(7), 904–907 (2011)

    CAS  Google Scholar 

  32. W.E. Mahmoud et al., Polym. Int. 59(9), 1282–1288 (2010)

    CAS  Google Scholar 

  33. S. Kang et al., ACS Omega 7(2), 2074–2081 (2022)

    CAS  Google Scholar 

  34. S. Dias et al., Inorg. Chem. 56(4), 2198–2203 (2017)

    CAS  Google Scholar 

  35. W. Shirbeeny et al., Polym. Compos. 34(4), 587–591 (2013)

    CAS  Google Scholar 

  36. W.E. Mahmoud, Ceram. Int. 46(15), 23719–23727 (2020)

    CAS  Google Scholar 

  37. M. Hazra et al., ACS Appl. Mater. Interfaces 11(43), 40393–40405 (2019)

    CAS  Google Scholar 

  38. H. Yang et al., J. Chem. Edu. 96(10), 2300–2307 (2019)

    CAS  Google Scholar 

  39. Y. Du et al., Nanomaterials 12(5), 741 (2022)

    CAS  Google Scholar 

  40. B. Xu et al., Nanomaterials 12(15), 2704 (2022)

    CAS  Google Scholar 

  41. Y. Du et al., Micromachines 13(10), 1579 (2022)

    Google Scholar 

  42. M. Tusher, Opt. Quantum Electron. 55(4), 04632 (2023)

    Google Scholar 

  43. A. Mathur, A. Li, V. Maheshwari, J. Phys. Chem. Lett. 12(5), 1481–1489 (2021)

    CAS  Google Scholar 

  44. M. Al Murisi et al., Intern. J. Hyd. Energy 460, 231–235 (2023)

    Google Scholar 

  45. H.A. Al-Khanbashi et al., Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 800–805 (2014)

    CAS  Google Scholar 

  46. P. Halappa, A. Mathur, M.-H. Delville, C. Shivakumara, J. Alloys Compd. 740, 1086–1098 (2018)

    CAS  Google Scholar 

  47. T. Blensdorf et al., J. Mater. Chem. A 5(7), 3493–3502 (2017)

    CAS  Google Scholar 

  48. A.M.Y. El Lawindy et al., Polym. Int. 51(7), 601–606 (2002)

    Google Scholar 

  49. W.E. Mahmoud et al., J. Appl. Polym. Sci. 125(1), 339–343 (2012)

    CAS  Google Scholar 

  50. W.E. Mahmoud et al., Synth. Met. 217, 152–155 (2016)

    CAS  Google Scholar 

  51. F.S. Al-Hazmi et al., Colloids Surf. A 485, 91–95 (2015)

    CAS  Google Scholar 

  52. W.E. Mahmoud et al., Polym. Compos. 32(7), 1143–1147 (2011)

    CAS  Google Scholar 

  53. W.E. Mahmoud et al., Ceram. Int. 41(7), 9101–9106 (2015)

    CAS  Google Scholar 

  54. W.E. Mahmoud et al., J. Alloy. Compd. 900, 163564 (2022)

    CAS  Google Scholar 

  55. C. Bauer et al., J. Chem. Edu. 95(7), 1179–1186 (2018)

    CAS  Google Scholar 

  56. N. Wazzan et al., J. Mol. Liq. 360, 119531 (2022)

    CAS  Google Scholar 

  57. F.A. Al-Agel et al., Sens. Actuators B: Chem. 183, 441–445 (2013)

    CAS  Google Scholar 

  58. W.E. Mahmoud et al., J. Phys. D Appl. Phys. 39(3), 541–546 (2006)

    CAS  Google Scholar 

  59. S.A. Al-Bluwi et al., Sens. Actuators A 313, 112166 (2020)

    Google Scholar 

  60. Y.A. Kabachii et al., Chem. Mater. 25(12), 2434–2440 (2013)

    CAS  Google Scholar 

  61. W.E. Mahmoud et al., Superlattices Microstruct. 63, 162–167 (2013)

    CAS  Google Scholar 

  62. W. Shirbeeny et al., Sensors and Actuators, B: Chemical 191 (2014) 102–107.

  63. W.E. Mahmoud et al., Opt. Laser Technol. 134, 106625 (2021)

    CAS  Google Scholar 

  64. A. Mathur, P. Halappa, C. Shivakumara, J. Mater. Sci. Mater. Electron. 29, 19951–19964 (2018)

    CAS  Google Scholar 

  65. C. Harris et al., J. Chem. Edu. 96(3), 565–570 (2019)

    CAS  Google Scholar 

  66. V. Nirwan et al., Nanomaterials 13(4), 630 (2023)

    CAS  Google Scholar 

  67. F.A. Al-Agel et al., Mater. Lett. 82, 82–84 (2012)

    CAS  Google Scholar 

  68. E. Schneider et al., J. Chem. Edu. 96(3), 540–545 (2019)

    CAS  Google Scholar 

  69. W.E. Mahmoud et al., Polym. Int. 61(1), 51–54 (2012)

    CAS  Google Scholar 

  70. F.A. Al-Agel et al., Ceram. Int. 41(1), 1115–1119 (2015)

    CAS  Google Scholar 

  71. M. Elisa et al., JOM 73(2), 495–503 (2021)

    CAS  Google Scholar 

  72. M.H. El Eraki et al., Polym. Degrad. Stab. 91(7), 1417–1423 (2006)

    Google Scholar 

  73. G.P. Huo et al., J. Mater. Sci. 56(10), 6031–6051 (2021)

    CAS  Google Scholar 

  74. F.S. Al-Hazmi et al., Synth. Met. 200, 54–57 (2015)

    CAS  Google Scholar 

  75. R. Easterday et al., Catal. Sci. Technol. 5(3), 1902–1910 (2015)

    CAS  Google Scholar 

  76. W.E. Mahmoud et al., Org. Electron.: Phys. Mater. Appl. 14(11), 2762–2769 (2013)

    CAS  Google Scholar 

  77. W.E. Mahmoud et al., J. Appl. Polym. Sci. 118(3), 1598–1605 (2010)

    CAS  Google Scholar 

  78. W.E. Mahmoud et al., Opt. Mater. 34(7), 1082–1086 (2012)

    CAS  Google Scholar 

  79. W.E. Mahmoud et al., Chem. Eng. J. 281, 192–198 (2015)

    CAS  Google Scholar 

  80. S.A. Al-Ghamdi et al., Ceram. Int. 39(5), 5025–5030 (2013)

    CAS  Google Scholar 

  81. Y.C. Chang et al., Comput. Phys. Commun. 196, 92–112 (2015)

    CAS  Google Scholar 

  82. W.E. Mahmoud et al., Superlattices Microstruct. 68, 1–5 (2014)

    CAS  Google Scholar 

  83. T. Al-Harbi et al., Superlattices Microstruct. 52(4), 643–647 (2012)

    CAS  Google Scholar 

  84. A.A. Al-Ghamdi et al., J. Alloy. Compd. 485(1–2), 59–63 (2009)

    Google Scholar 

  85. W.E. Mahmoud, Sens. Actuators B: Chem. 238, 1001–1007 (2017)

    CAS  Google Scholar 

  86. W.E. Mahmoud et al., J. Appl. Polym. Sci. 122(5), 3023–3029 (2011)

    CAS  Google Scholar 

  87. H.S. Al-Ghamdi et al., Mater. Lett. 105, 62–64 (2013)

    CAS  Google Scholar 

  88. W.E. Mahmoud et al., Polym. Adv. Technol. 23(2), 161–165 (2012)

    CAS  Google Scholar 

  89. W.E. Mahmoud et al., Mater. Res. Bull. 72(8352), 154–159 (2015)

    CAS  Google Scholar 

  90. G. Yuan et al., Chem. Comm. 57(10), 1250–1253 (2021)

    CAS  Google Scholar 

  91. A. Mathur, H. Fan, V. Maheshwari, ACS Appl. Mater. Interfaces 13(49), 58956–58965 (2021)

    CAS  Google Scholar 

  92. R. Toufanian et al., Chem. Mater. 33(18), 7527–7536 (2021)

    CAS  Google Scholar 

  93. P. Das et al., Eur. Phys. J. E 45, 98 (2022)

    CAS  Google Scholar 

  94. J.T. Andrews, P. Sen, Superlattices Microstruct. 26(3), 171–180 (1999)

    Google Scholar 

  95. P.L. Praveen, D.P. Ojha, Phase Trans. 87(5), 515–525 (2014)

    CAS  Google Scholar 

  96. S. Rafique et al., RSC Adv. 6(55), 50043–50052 (2016)

    CAS  Google Scholar 

  97. W.E. Mahmoud et al., Opt. Mater. 35(3), 652–656 (2013)

    CAS  Google Scholar 

  98. W.E. Mahmoud et al., Superlattices Microstruct. 96, 174–178 (2016)

    CAS  Google Scholar 

  99. M. Hafez et al., Polym. Int. 57(1), 35–38 (2008)

    Google Scholar 

  100. M. Hafez et al., Mater. Lett. 65(12), 1868–1870 (2011)

    CAS  Google Scholar 

  101. F.R. Al-Solamy et al., Polym. Adv. Technol. 23(3), 478–482 (2012)

    CAS  Google Scholar 

  102. EYu. Yuzik-Klimova et al., RSC Adv. 4(44), 23271–23280 (2014)

    CAS  Google Scholar 

  103. W.E. Mahmoud et al., Superlattices Microstruct. 51(4), 506–511 (2012)

    CAS  Google Scholar 

  104. K. Ali et al., Synth. Met. 175, 52–55 (2013)

    CAS  Google Scholar 

  105. W.E. Mahmoud et al., Mater. Lett. 96, 146–148 (2013)

    CAS  Google Scholar 

  106. W.E. Mahmoud et al., Superlattices Microstruct. 50(1), 21–25 (2011)

    CAS  Google Scholar 

  107. F.S. Al-Hazmi et al., Superlattices Microstruct. 86, 270–274 (2015)

    CAS  Google Scholar 

  108. W.E. Mahmoud et al., Radiat. Phys. Chem. 81(6), 693–696 (2012)

    CAS  Google Scholar 

  109. W.E. Mahmoud et al., J. Phys. D Appl. Phys. 39(11), 2427–2432 (2006)

    CAS  Google Scholar 

  110. W.E. Mahmoud et al., J. Lumin. 132(9), 2447–2451 (2012)

    CAS  Google Scholar 

  111. M. Wirey et al., Macromol. Chem. Phys.Chem. Phys. 217(6), 794–803 (2016)

    CAS  Google Scholar 

  112. S.J. Yaghmour et al., Mater. Lett. 109, 55–57 (2013)

    CAS  Google Scholar 

  113. F. Al-Hazmi et al., Mater. Lett. 86, 28–30 (2012)

    CAS  Google Scholar 

  114. W.E. Mahmoud et al., Mater. Lett. 65(12), 1986–1988 (2011)

    CAS  Google Scholar 

  115. W.E. Mahmoud et al., Mater. Res. Bull. 46(9), 1366–1371 (2011)

    CAS  Google Scholar 

  116. H.M. El-Mallah et al., J. Phys. D Appl. Phys. 42(3), 035502 (2009)

    Google Scholar 

  117. W.E. Mahmoud, Mater. Lett. 177, 42–45 (2016)

    CAS  Google Scholar 

  118. W.E. Mahmoud, J. Appl. Polym. Sci. 123(5), 2667–2675 (2012)

    CAS  Google Scholar 

  119. A.A. Al-Ghamdi et al., Polym. Adv. Technol. 22(6), 877–881 (2011)

    Google Scholar 

  120. H.S. Al-Ghamdi et al., J. Lumin. 145, 880–883 (2014)

    CAS  Google Scholar 

  121. W.E. Mahmoud et al., Polym. Compos. 34(2), 299–304 (2013)

    CAS  Google Scholar 

  122. S.A. Al-Bluwi et al., Sens. Actuators A 312, 112101 (2020)

    Google Scholar 

  123. A. Mathur, V. Maheshwari, J. Mater. Chem. C 10(19), 7485–7493 (2022)

    CAS  Google Scholar 

  124. M.H.I. El-Eraki et al., J. Phys. D Appl. Phys. 39(11), 2427–2432 (2006)

    Google Scholar 

  125. W.E. Mahmoud, J. Phys. D Appl. Phys. 42(15), 155502 (2009)

    Google Scholar 

  126. D. Liu, L. Dai, L. You, W. Xu, Nanotechnology 19, 465203 (2021)

    Google Scholar 

  127. A. Mathur, A. Li, V. Maheshwari, ACS Appl. Mater. Interfaces 15(21), 25932–25941 (2023)

    CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Gahtany.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

The authors states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gahtany, S. Structural, luminescence and optoelectronic properties of the In1−xAcxAs quantum dots prepared using mercaptoacetic acid-assisted colloidal technique for photodiode applications. J Mater Sci: Mater Electron 34, 2061 (2023). https://doi.org/10.1007/s10854-023-11429-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11429-z

Navigation