Pressure-dependent phase transition of 2D layered silicon telluride (Si2Te3) and manganese intercalated silicon telluride

Abstract

Two-dimensional (2D) layered silicon telluride (Si2Te3) nanocrystals were compressed to 12 GPa using diamond anvil cell techniques. Optical measurements show a color change from transparent red to opaque black indicating a semiconductor-to-metal phase transition. Raman scattering was used to observe the stiffening of the crystal lattice and subsequent phase behavior. A possible phase transition was observed at 9.5 ± 0.5 GPa evidenced by the disappearance of the A1g stretching mode. Si2Te3 was intercalated with elemental manganese to ∼ 1 at.%. Intercalation lowers the pressure of the proposed phase transition to 7.5 ± 1 GPa. Raman modes show both phonon stiffening and phonon softening, suggesting negative linear compressibility. These results provide fundamental insight into the high-pressure optical phonon behavior of silicon telluride and illuminate how a specific electron-donating intercalant can chemically alter pressure-dependent optical phonon behavior.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Keuleyan, S.; Wang, M. J.; Chung, F. R.; Commons, J.; Koski, K. J. A silicon-based two-dimensional chalcogenide: Growth of Si2Te3 nanoribbons and nanoplates. Nano Lett. 2015, 15, 2285–2290.

    Article  Google Scholar 

  2. [2]

    Wang, M. J.; Lahti, G.; Williams, D.; Koski, K. J. Chemically tunable full spectrum optical properties of 2D silicon telluride nanoplates. ACS Nano 2018, 12, 6163–6169.

    Article  Google Scholar 

  3. [3]

    Wu, K. Y.; Sun, W. W.; Jiang, Y.; Chen, J. Y.; Li, L.; Cao, C. B.; Shi, S. W.; Shen, X.; Cui, J. B. Structure and photoluminescence study of silicon based two-dimensional Si2Te3 nanostructures. J. Appl. Phys. 2017, 122, 075701.

    Article  Google Scholar 

  4. [4]

    Chen, J. Y.; Wu, K. Y.; Shen, X.; Hoang, T. B.; Cui, J. B. Probing the dynamics of photoexcited carriers in Si2Te3 nanowires. J. Appl. Phys. 2018, 125, 024306.

    Article  Google Scholar 

  5. [5]

    Wu, K. Y.; Cui, J. B. Morphology control of Si2Te3 nanostructures synthesized by CVD. J. Mater. Sci. Mater. Electron. 2018, 29, 15643–15648.

    Article  Google Scholar 

  6. [6]

    Wu, K. Y.; Chen, J. Y.; Shen, X.; Cui, J. B. Resistive switching in Si2Te3 nanowires. AIP Adv. 2018, 8, 125008.

    Article  Google Scholar 

  7. [7]

    Bailey, L.G. Preparation and properties of silicon telluride. J. Phys. Chem. Solids 1966, 27, 1593–1598.

    Article  Google Scholar 

  8. [8]

    Ploog, K.; Stetter, W.; Nowitzki, A.; Schönherr, E. Crystal growth and structure determination of silicon telluride Si2Te3. Mater. Res. Bull. 1976, 11, 1147–1153.

    Article  Google Scholar 

  9. [9]

    Ziegler, K.; Birkholz, U. Photoelectric properties of Si2Te3 single crystals. Phys. Status Solidi A 1977, 39, 467–475.

    Article  Google Scholar 

  10. [10]

    Juneja, R.; Pandey, T.; Singh, A. K. High thermoelectric performance in n-doped silicon-based chalcogenide Si2Te3. Chem. Mater. 2017, 29, 3723–3730.

    Article  Google Scholar 

  11. [11]

    Wang, Q.; Quhe, R.; Guan, Z. X.; Wu, L. Y.; Bi, J. Y.; Guan, P. F.; Lei, M.; Lu, P. F. High n-type and p-type thermoelectric performance of two-dimensional SiTe at high temperature. RSC Adv. 2018, 8, 21280–21287.

    Article  Google Scholar 

  12. [12]

    Wang, M. J.; Williams, D.; Lahti, G.; Teshima, S.; Dominguez Aguilar, D.; Perry, R.; Koski, K. J. Chemical intercalation of heavy metal, semimetal, and semiconductor atoms into 2D layered chalcogenides. 2D Mater. 2018, 5, 045005.

    Article  Google Scholar 

  13. [13]

    Steinberg, S.; Stoffel, R. P.; Dronskowski, R. Search for the mysterious SiTe-An examination of the binary Si-Te system using first-principles-based methods. Cryst. Growth Des. 2016, 16, 6152–6155.

    Article  Google Scholar 

  14. [14]

    Göbgen, K. C.; Steinberg, S.; Dronskowski, R. Revisiting the Si-Te system: SiTe2 finally found by means of experimental and quantum-chemical techniques. Inorg. Chem. 2017, 56, 11398–11405.

    Article  Google Scholar 

  15. [15]

    Ma, Y.; Kou, L.; Dai, Y.; Heine, T. Proposed two-dimensional topological insulator in SiTe. Phys. Rev. B. 2016, 94, 201104.

    Article  Google Scholar 

  16. [16]

    Mishra, R.; Mishra, P. K.; Phapale, S.; Babu, P. D.; Sastry, P. U.; Ravikumar, G.; Yadav, A. K. Evidences of the existence of SiTe2 crystalline phase and a proposed new Si-Te phase diagram. J. Solid State Chem. 2016, 237, 234–241.

    Article  Google Scholar 

  17. [17]

    Shen, X.; Puzyrev, Y. S.; Combs, C.; Pantelides, S. T. Variability of structural and electronic properties of bulk and monolayer Si2Te3. Appl. Phys. Lett. 2016, 109, 113104.

    Article  Google Scholar 

  18. [18]

    Powell, A. V. Intercalation compounds of low-dimensional transition metal chalcogenides. Annu. Rep. Sect. C: Phys. Chem. 1993, 90, 177–213.

    Article  Google Scholar 

  19. [19]

    Zwick, U.; Rieder, K. H. Infrared and Raman study of Si2Te3. Z. Phys. B: Condens. Matter 1976, 25, 319–322.

    Article  Google Scholar 

  20. [20]

    Mernagh, T. P.; Liu, L. G. Pressure dependence of Raman phonons of some group IVA (C, Si, and Ge) elements. J. Phys. Chem. Solids 1991, 52, 507–512.

    Article  Google Scholar 

  21. [21]

    Marini, C.; Chermisi, D.; Lavagnini, M.; Di Castro, D.; Petrillo, C.; Degiorgi, L.; Scandolo, S.; Postorino, P. High-pressure phases of crystalline tellurium: A combined Raman and ab initio study. Phys. Rev. B 2012, 86, 064103.

    Article  Google Scholar 

  22. [22]

    Baughman, R. H.; Stafström, S.; Cui, C. X.; Dantas, S. O. Materials with negative compressibilities in one or more dimensions. Science 1998, 279, 1522–1524.

    Article  Google Scholar 

  23. [23]

    Cairns, A. B.; Goodwin, A. L. Negative linear compressibility. Phys. Chem. Chem. Phys. 2015, 17, 20449–20465.

    Article  Google Scholar 

  24. [24]

    Loa, I.; Syassen, K.; Kremer, R. K. Vibrational properties of NaV2O5 under high pressure studied by Raman spectroscopy. Solid State Commun. 1999, 112, 681–685.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research (No. N00014-16-1-3161).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kristie J. Koski.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johnson, V.L., Anilao, A. & Koski, K.J. Pressure-dependent phase transition of 2D layered silicon telluride (Si2Te3) and manganese intercalated silicon telluride. Nano Res. 12, 2373–2377 (2019). https://doi.org/10.1007/s12274-019-2387-7

Download citation

Keywords

  • silicon telluride
  • Si2Te3
  • high pressure
  • diamond anvil cell
  • 2D layered material