Skip to main content
Log in

Charge density wave phase suppression in 1T-TiSe2 through Sn intercalation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Taking advantage of the unique layered structure of TiSe2, the intrinsic electronic properties of two-dimensional materials can easily be tuned via heteroatomic engineering. Herein, we show that the charge density wave (CDW) phase in 1T-TiSe2 single-crystals can be gradually suppressed through Sn atoms intercalation. Using angle-resolved photoemission spectroscopy (ARPES) and temperature-dependent resistivity measurements, this work reveals that Sn atoms can induce charge doping and modulate the intrinsic electronic properties in the host 1T-TiSe2. Notably, our temperature-dependent ARPES results highlight the role exciton-phonon interaction and the Jahn-Teller mechanism through the formation of backfolded bands and exhibition of a downward Se shift of 4p valence band in the formation of CDW in this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, J. F.; Ou, H. W; Wu, G.; Xie, B. P.; Zhang, Y.; Shen, D. W.; Wei, J.; Yang, L. X.; Dong, J. K.; Arita, M. et al. Evolution of the electronic structure of 1T-CuxTiSe2. Phys. Rev. Lett. 2007, 99, 146401.

    Article  CAS  Google Scholar 

  2. Bussmann-Holder, A.; Bishop, A. R. Suppression of charge-density formation in TiSe2 by Cu doping. Phys. Rev. B 2009, 79, 024302.

    Article  Google Scholar 

  3. Qian, D.; Hsieh, D.; Wray, L.; Morosan, E.; Wang, N. L.; Xia, Y.; Cava, R. J.; Hasan, M. Z. Emergence of Fermi pockets in a new excitonic charge-density-wave melted superconductor. Phys. Rev. Lett. 2007, 98, 117007.

    Article  CAS  Google Scholar 

  4. Li, L. J.; O’Farrell, E. C. T.; Loh, K. P.; Eda, G.; Özyilmaz, B.; Neto, A. H. C. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 2016, 529, 185–189.

    Article  CAS  Google Scholar 

  5. Morosan, E.; Zandbergen, H. W.; Dennis, B. S.; Bos, J. W. G.; Onose, Y.; Klimczuk, T.; Ramirez, A. P.; Ong, N. P.; Cava, R. J. Superconductivity in CuxTiSe2. Nat. Phys. 2006, 2, 544–550.

    Article  CAS  Google Scholar 

  6. Kolekar, S.; Bonilla, M.; Diaz, H. C.; Hashimoto, M.; Lu, D. H.; Batzill, M. Controlling the charge density wave transition in monolayer TiSe2: Substrate and doping effects. Adv. Quantum Technol. 2018, 1, 1800070.

    Article  Google Scholar 

  7. Sugawara, K.; Nakata, Y.; Shimizu, R.; Han, P.; Hitosugi, T.; Sato, T.; Takahashi, T. Unconventional charge-density-wave transition in monolayer 1T-TiSe2. ACS Nano 2016, 10, 1341–1345.

    Article  CAS  Google Scholar 

  8. Liu, G. X.; Debnath, B.; Pope, T. R.; Salguero, T. T.; Lake, R. K.; Balandin, A. A. A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature. Nat. Nanotechnol. 2016, 11, 845–850.

    Article  CAS  Google Scholar 

  9. Khitun, A. G.; Geremew, A. K.; Balandin, A. A. Transistor-less logic circuits implemented with 2-D charge density wave devices. IEEE Electron Device Lett. 2018, 39, 1449–1452.

    Article  CAS  Google Scholar 

  10. Sun, Y.; Dai, T. He. Z. H.; Zhou, W. Q.; Hu, P.; Li, S. W.; Wu, S. X. Memristive phase switching in two-dimensional 1T’-VSe2 crystals. Appl. Phys. Lett. 2020, 116, 033101.

    Article  CAS  Google Scholar 

  11. Zhu, C.; Chen, Y.; Liu, F. C.; Zheng, S. J.; Li, X. B.; Chaturvedi, A.; Zhou, J. D.; Fu, Q. D.; He, Y. M.; Zeng, Q. S. et al. Light-tunable 1T-TaS2 charge-density-wave oscillators. ACS Nano 2018, 12, 11203–11210.

    Article  CAS  Google Scholar 

  12. Yan, D.; Lin, Y. S.; Wang, G. H.; Zhu, Z.; Wang, S., Shi, L.; He, Y.; Li, M. R.; Zheng, H.; Ma, J. et al. The unusual suppression of superconducting transition temperature in double-doping 2H-NbSe2. Supercond. Sci. Technol. 2019, 32, 085008.

    Article  CAS  Google Scholar 

  13. Luo, H. X.; Krizan, J. W.; Seibel, E. M.; Xie, W. W.; Sahasrabudhe, G. S.; Bergman, S. L.; Phelan, B. F.; Tao, J.; Wang, Z.; Zhang, J. D. et al. Cr-doped TiSe2-A layered dichalcogenide spin glass. Chem. Mater. 2015, 27, 6810–6817.

    Article  CAS  Google Scholar 

  14. Liu, M. Z.; Wu, C. W.; Liu, Z. Z.; Wang, Z. Q.; Yao, D. X.; Zhong, D. Y. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738.

    Article  CAS  Google Scholar 

  15. Adam, M. L.; Bala, A. A. Superconductivity in quasi-2D InTaX2 (X = S, Se) type-II Weyl semimetals. J. Phys.: Condens. Matter. 2021, 33, 225502.

    CAS  Google Scholar 

  16. Wang, R.; Zhou, J. B.; Wang, X. S.; Xie, L. M.; Zhao, J. M.; Qiu, X. H. Layer-dependent charge density wave phase transition stiffness in 1T-TaS2 nanoflakes evidenced by ultrafast carrier dynamics. Nano Res. 2021, 14, 1162–1166.

    Article  CAS  Google Scholar 

  17. Di Salvo, F. J.; Moncton, D. E.; Waszczak, J. V. Electronic properties and superlattice formation in the semimetal TiSe2. Phys. Rev. B 1976, 14, 4321–4328.

    Article  CAS  Google Scholar 

  18. Adam, M. L.; Bala, A. A. Prediction of phonon-mediated superconductivity and charge density wave in charge doped 1T-HfTe2. Comput. Condens. Matter 2021, 26, e00527.

  19. Umemoto, Y.; Sugawara, K.; Nakata, Y.; Takahashi, T.; Sato, T. Pseudogap, Fermi arc, and Peierls-insulating phase induced by 3D-2D crossover in monolayer VSe2. Nano Res. 2019, 12, 165–169.

    Article  CAS  Google Scholar 

  20. von Boehm, J.; Isomaki, H. M. Relativistic p-d gaps of 1T TiSe2, TiS2, ZrSe2 and ZrS2. J. Phys. C: Solid State Phys. 1982, 15, L733–L737.

    Article  CAS  Google Scholar 

  21. Zunger, A.; Freeman, A. J. Band structure and lattice instability of TiSe2. Phys. Rev. B 1978, 17, 1839–1842.

    Article  CAS  Google Scholar 

  22. Fang, C. M.; de Groot, R. A.; Haas, C. Bulk and surface electronic structure of 1T-TiS2 and 1T-TiSe2. Phys. Rev. B 1997, 56, 4455–4463.

    Article  CAS  Google Scholar 

  23. Isomaki, H.; von Boehm, J. The gaps of the ideal TiS2 and TiSe2. J. Phys. C:Solid State Phys. 1981, 14, L75–L80.

    Article  CAS  Google Scholar 

  24. Wilson, J. A. Modelling the contrasting semimetallic characters of TiS2 and TiSe2. Phys. Status Solidi (b) 1978, 86, 11–36.

    Article  CAS  Google Scholar 

  25. Wilson, J. A. Concerning the semimetallic characters of TiS2 and TiSe2. Solid State Commun. 1977, 22, 551–553.

    Article  CAS  Google Scholar 

  26. van Wezel, J.; Nahai-Williamson, P.; Saxena, S. S. Exciton-phonon-driven charge density wave in TiSe2. Phys. Rev. B 2010, 81, 165109.

    Article  Google Scholar 

  27. Monney, C.; Cercellier, H.; Battaglia, C.; Schwier, E. F.; Didiot, C.; Garnier, M. G.; Beck, H.; Aebi, P. Temperature dependence of the excitonic insulator phase model in 1T-TiSe2. Phys. B:Condens. Matter 2009, 404, 3172–3175.

    Article  CAS  Google Scholar 

  28. Monney, C.; Cercellier, H.; Clerc, F.; Battaglia, C.; Schwier, E. F.; Didiot, C.; Garnier, M. G.; Beck, H.; Aebi, P.; Berger, H. et al. Spontaneous exciton condensation in 1T-TiSe2: BCS-like approach. Phys. Rev. B 2009, 79, 045116.

    Article  Google Scholar 

  29. Wegner, A.; Zhao, J.; Li, J.; Yang, J.; Anikin, A. A.; Karapetrov, G.; Esfarjani, K.; Louca, D.; Chatterjee, U. Evidence for pseudo-Jahn-Teller distortions in the charge density wave phase of 1T-TiSe2. Phys. Rev. B 2020, 101, 195145.

    Article  CAS  Google Scholar 

  30. Hughes, H. P. Structural distortion in TiSe2 and related materials—A possible Jahn-Teller effect. J. Phys. C:Solid State Phys. 1977, 10, L319–L323.

    Article  CAS  Google Scholar 

  31. Whangbo, M. H.; Canadell, E. Analogies between the concepts of molecular chemistry and solid-state physics concerning structural instabilities. Electronic origin of the structural modulations in layered transition metal dichalcogenides. J. Am. Chem. Soc. 1992, 114, 9587–9600.

    Article  CAS  Google Scholar 

  32. van Wezel, J.; Nahai-Williamson, P.; Saxena, S. S. An alternative interpretation of recent ARPES measurements on TiSe2. Europhys. Lett. 2010, 89, 47004.

    Article  Google Scholar 

  33. Hedayat, H.; Sayers, C. J.; Bugini, D.; Dallera, C.; Wolverson, D.; Batten, T.; Karbassi, S.; Friedemann, S.; Cerullo, G.; van Wezel, J. et al. Excitonic and lattice contributions to the charge density wave in 1T-TiSe2 revealed by a phonon bottleneck. Phys. Rev. Res. 2019, 1, 023029.

    Article  CAS  Google Scholar 

  34. Huang, S. H.; Shu, G. J.; Pai, W. W.; Liu, H. L.; Chou, F. C. Tunable Se vacancy defects and the unconventional charge density wave in 1T-TiSe2−δ. Phys. Rev. B 2017, 95, 045310.

    Article  Google Scholar 

  35. Rossnagel, K.; Kipp, L.; Skibowski, M. Charge-density-wave phase transition in 1T-TiSe2: Excitonic insulator versus band-type Jahn-Teller mechanism. Phys. Rev. B 2017, 65, 235101.

    Article  Google Scholar 

  36. van Wezel, J.; Nahai-Williamson, P.; Saxena, S. S. Exciton-phonon interactions and superconductivity bordering charge order in TiSe2. Phys. Rev. B 2011, 83, 024502.

    Article  Google Scholar 

  37. Yablonskikh, M. V.; Shkvarin, A. S.; Yarmoshenko, Y. M.; Skorikov, N. A.; Titov, A. N. Resonant photoemission at the L3 absorption edge of Mn and Ti and the electronic structure of 1T-Mn0.2TiSe2. J. Phys. Condens. Matter 2012, 24, 045504.

    Article  CAS  Google Scholar 

  38. Shkvarin, A. S.; Yarmoshenko, Y. M.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. A.; Zhukov, Y. M.; Titov, A. N. The electronic structure formation of CuxTiSe2 in a wide range (0.04 < x < 0.8) of copper concentration. J. Chem. Phys. 2016, 144, 074702.

    Article  CAS  Google Scholar 

  39. Adam, M. L.; Liu, Z. F.; Moses, O. A.; Wu, X. J.; Song, L. Superconducting properties and topological nodal lines features in centrosymmetric Sn0.5TaSe2. Nano Res. 2021, 14, 2613–2619.

    Article  CAS  Google Scholar 

  40. Shkvarin, A. S.; Yarmoshenko, Y. M.; Merentsov, A. I.; Zhukov, Y. M.; Titov, A. A.; Shkvarina, E. G.; Titov, A. N. Electronic structure of NixTiSe2 (0.05 ≤ x ≤ 0.46) compounds with ordered and disordered Ni. Phys. Chem. Chem. Phys. 2017, 19, 4500–4506.

    Article  CAS  Google Scholar 

  41. Yarmoshenko, Y. M.; Shkvarin, A. S.; Yablonskikh, M. V.; Merentsov, A. I.; Titov, A. N. Localization of charge carriers in layered crystals MexTiSe2 (Me = Cr, Mn, Cu) studied by the resonant photoemission. J. Appl. Phys. 2013, 114, 133704.

    Article  Google Scholar 

  42. Maksimov, V. I.; Baranov, N. V.; Pleschov, V. G.; Inoue, K. Influence of the Mn intercalation on magnetic properties of TiSe2. J. Alloys Compd. 2004, 384, 33–38.

    Article  CAS  Google Scholar 

  43. Titov, A. A.; Balakirev, V. F.; Volegov, A. S.; Titov, A. N. Magnetic susceptibility of titanium diselenide intercalated with copper. Phys. Solid State 2012, 54, 1173–1175.

    Article  CAS  Google Scholar 

  44. Shkvarin, A. S.; Yarmoshenko, Y. M.; Skorikov, N. A.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. N. Electronic structure of titanium dichalcogenides TiX2 (X = S, Se, Te). J. Exp. Theor. Phys. 2012, 114, 150–156.

    Article  CAS  Google Scholar 

  45. Shkvarin, A. S.; Yarmoshenko, Y. M.; Skorikov, N. A.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. N. Resonance photoelectron spectroscopy of TiX2 (X = S, Se, Te) titanium dichalcogenides. J. Exp. Theor. Phys. 2012, 115, 798–804.

    Article  CAS  Google Scholar 

  46. Wang, G. F.; Li, J. H.; Lv, K. G.; Zhang, W. J.; Ding, X.; Yang, G. Z.; Liu, X. Y.; Jiang, X. Q. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Sci. Rep. 2016, 6, 31769.

    Article  CAS  Google Scholar 

  47. Sun, L. F.; Chen, C. H.; Zhang, Q. H.; Sohrt, C.; Zhao, T. Q.; Xu, G. C.; Wang, J. H.; Wang, D.; Rossnagel, K.; Gu, L. et al. Suppression of the charge density wave state in two-dimensional 1T-TiSe2 by atmospheric oxidation. Angew. Chem., Int. Ed. 2017, 56, 8981–8985.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key R&D Program of China (Nos. 2020YFA0405800 and 2017YFA0303500), the National Natural Science Foundation of China (NSFC) (Nos. U1932201, and 21727801), the International Partnership Program of The Chinese Academy of Sciences (CAS) (No. 211134KYSB20190063), the CAS Collaborative Innovation Program of Hefei Science Center (No. 2019HSC-CIP002), and the University Synergy Innovation Program of Anhui Province (No. GXXT-2020-002). We thank the USTC supercomputer center (USTC SCC). We acknowledge the support and usage of supercomputing platform of the National Synchrotron Radiation Lab, Hefei and also the ARPES endstation at the NSRL. M. L. A. acknowledges the Chinese Scholarship Council Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Wu, Zhe Sun or Li Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, M.L., Zhu, H., Liu, Z. et al. Charge density wave phase suppression in 1T-TiSe2 through Sn intercalation. Nano Res. 15, 2643–2649 (2022). https://doi.org/10.1007/s12274-021-3859-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3859-0

Keywords

Navigation