Advertisement

An electrodeposition approach to metal/metal oxide heterostructures for active hydrogen evolution catalysts in near-neutral electrolytes

  • Michael J. Kenney
  • Jianan Erick Huang
  • Yong Zhu
  • Yongtao Meng
  • Mingquan Xu
  • Guanzhou Zhu
  • Wei-Hsuan Hung
  • Yun Kuang
  • Mengchang Lin
  • Xiaoming Sun
  • Wu Zhou
  • Hongjie DaiEmail author
Article
  • 56 Downloads

Abstract

Neutral water splitting is attractive for its use of non-corrosive and environmentally friendly electrolytes. However, catalyst development for hydrogen and oxygen evolution remains a challenge under neutral conditions. Here we report a simple electrodeposition and reductive annealing procedure to produce a highly active Ni-Co-Cr metal/metal oxide heterostructured catalyst directly on Ni foam. The resulting electrocatalyst for hydrogen evolution reaction (HER) requires only 198 mV of overpotential to reach 100 mA/cm2 in 1 M potassium phosphate (pH = 7.4) and can operate for at least two days without significant performance decay. Scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) imaging reveals a Ni-Co alloy core decorated with blended oxides layers of NiO, CoO and Cr2O3. The metal/metal oxide interfaces are suggested to be responsible for the high HER activity.

Keywords

water splitting catalysis nanostructured materials hydrogen evolution chemical mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was partially supported by US Department of Energy DOE DE-SC0016165. Y. K. and X. M. S. acknowledge the financial support from the National Natural Science Foundation of China, the National Key Research and Development Project of China (No. 2016YFF0204402). Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-1542152. The electron-microscopy work was performed in the CAS Key Laboratory of Vacuum Sciences with financial support from the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (CAS) and the National Natural Science Foundation of China (No. 51622211).

Supplementary material

12274_2019_2379_MOESM1_ESM.pdf (2 mb)
An electrodeposition approach to metal/metal oxide heterostructures for active hydrogen evolution catalysts in near-neutral electrolytes

References

  1. [1]
    Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.CrossRefGoogle Scholar
  2. [2]
    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.CrossRefGoogle Scholar
  3. [3]
    Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.CrossRefGoogle Scholar
  4. [4]
    Esswein, A. J.; Surendranath, Y.; Reece, S. Y.; Nocera, D. G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy Environ. Sci. 2011, 4, 499–504.CrossRefGoogle Scholar
  5. [5]
    Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.CrossRefGoogle Scholar
  6. [6]
    Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352, 1210–1213.CrossRefGoogle Scholar
  7. [7]
    Torella, J. P.; Gagliardi, C. J.; Chen, J. S.; Bediako, D. K.; Colón, B.; Way, J. C.; Silver, P. A.; Nocera, D. G. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc. Natl. Acad. Sci. USA 2015, 112, 2337–2342.CrossRefGoogle Scholar
  8. [8]
    Feng, L. L.; Yu, G.; Wu, Y. T.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.CrossRefGoogle Scholar
  9. [9]
    Sun, Y. J.; Liu, C.; Grauer, D. C.; Yano, J.; Long, J. R.; Yang, P. D.; Chang, C. J. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 2013, 135, 17699–17702.CrossRefGoogle Scholar
  10. [10]
    Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak, R. E. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 2014, 8, 11101–11107.CrossRefGoogle Scholar
  11. [11]
    Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.CrossRefGoogle Scholar
  12. [12]
    Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.CrossRefGoogle Scholar
  13. [13]
    Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. Y.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.CrossRefGoogle Scholar
  14. [14]
    Zhang, L. H.; Han, L. L.; Liu, H. X.; Liu, X. J.; Luo, J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem., Int. Ed. 2017, 56, 13694–13698.CrossRefGoogle Scholar
  15. [15]
    Gong, M.; Zhou, W.; Kenney, M. J.; Kapusta, R.; Cowley, S.; Wu, Y. P.; Lu, B. A.; Lin, M. C.; Wang, D. Y.; Yang, J. et al. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting. Angew. Chem., Int. Ed. 2015, 54, 11989–11993.CrossRefGoogle Scholar
  16. [16]
    Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J. G.; Guan, M. Y.; Lin, M. C.; Zhang, B.; Hu, Y. F.; Wang, D. Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5, 4695.CrossRefGoogle Scholar
  17. [17]
    Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.CrossRefGoogle Scholar
  18. [18]
    Surendranath, Y.; Dinca, M.; Nocera, D. G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 2009, 131, 2615–2620.CrossRefGoogle Scholar
  19. [19]
    Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem., Int. Ed. 2012, 51, 12495–12498.CrossRefGoogle Scholar
  20. [20]
    Dinh, C. T.; Jain, A.; de Arquer, F. P. G.; De Luna, P.; Li, J.; Wang, N.; Zheng, X. L.; Cai, J.; Gregory, B. Z.; Voznyy, O. et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 2019, 4, 107–114.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Michael J. Kenney
    • 1
  • Jianan Erick Huang
    • 1
  • Yong Zhu
    • 2
  • Yongtao Meng
    • 1
    • 3
  • Mingquan Xu
    • 2
  • Guanzhou Zhu
    • 1
  • Wei-Hsuan Hung
    • 1
    • 4
  • Yun Kuang
    • 1
    • 5
  • Mengchang Lin
    • 3
  • Xiaoming Sun
    • 5
  • Wu Zhou
    • 2
  • Hongjie Dai
    • 1
    Email author
  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.School of Physical Sciences and CAS Center for Excellence in Topological Quantum ComputationUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.College of Electrical Engineering and AutomationShandong University of Science and TechnologyQingdaoChina
  4. 4.Department of Materials Science and EngineeringFeng Chia UniversityTaichungTaiwan
  5. 5.State Key laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations