Skip to main content
Log in

An extreme-condition model for quantifying growth kinetics of colloidal metal nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A strategy has been developed for analyzing growth kinetics of colloidal metal nanoparticle quantitatively by focusing both the very early and the very late growth stages, at which the size of growing nanoparticles and the reaction time follow linear functions. Applying this extreme-condition model to a microwave-assistant synthesis of colloidal silver nanoparticles, for the first time, results in the determination of intrinsic kinetics parameters involving in the growth of the silver nanoparticles. The diffusion coefficient (D) of the precursor species containing Ag+ is 4.9 × 10–14 m2/s and the surface reaction rate constant (k) of the precursor species on the surface of the growing silver nanoparticles is 8.7 × 10–8 m/s in an ethylene glycol solution containing 0.15 M polyvinylpyrrolidone at 140 °C. The extreme-condition model is ready to deconvolute the intrinsic kinetics parameters of growing colloidal nanoparticles once the enlargement rate of the nanoparticles can be experimentally measured in real time and with high temporal resolution. Availability of the high-fidelity values of k and D will provide the crucial information to guide the design and synthesis of colloidal metal nanoparticles with the desirable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

    Article  Google Scholar 

  2. Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

    Article  Google Scholar 

  3. Talapin, D. V.; Shevchenko, E. V. Introduction: Nanoparticle chemistry. Chem. Rev. 2016, 116, 10343–10345.

    Article  Google Scholar 

  4. Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016, 116, 10623–10730.

    Article  Google Scholar 

  5. Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Twodimensional colloidal nanocrystals. Chem. Rev. 2016, 116, 10934–10982.

    Article  Google Scholar 

  6. Sugimoto, T. Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 1987, 28, 65–108.

    Article  Google Scholar 

  7. LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

    Article  Google Scholar 

  8. Sugimoto, T. Monodispersed Particles; Elsevier: Amsterdam, 2001.

    Google Scholar 

  9. Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.

    Article  Google Scholar 

  10. Sun, Y. G.; Ren, Y. In situ synchrotron X-ray techniques for real-time probing of colloidal nanoparticle synthesis. Part. Part. Syst. Charact. 2013, 30, 399–419.

    Article  Google Scholar 

  11. Hu, Q.; Zhao, L. C.; Wu, J.; Gao, K.; Luo, D. Y.; Jiang, Y. F.; Zhang, Z. Y.; Zhu, C. H.; Schaible, E.; Hexemer, A. et al. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4− cage nanoparticles. Nat. Commun. 2017, 8, 15688.

    Article  Google Scholar 

  12. Polte, J.; Ahner, T. T.; Delissen, F.; Sokolov, S.; Emmerling, F.; Thünemann, A. F.; Kraehnert, R. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J. Am. Chem. Soc. 2010, 132, 1296–1301.

    Article  Google Scholar 

  13. Kwon, S. G.; Krylova, G.; Phillips, P. J.; Klie, R. F.; Chattopadhyay, S.; Shibata, T.; Bunel, E. E.; Liu, Y. Z.; Prakapenka, V. B.; Lee, B. et al. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat. Mater. 2015, 14, 215–223.

    Article  Google Scholar 

  14. Abécassis, B.; Bouet, C.; Garnero, C.; Constantin, D.; Lequeux, N.; Ithurria, S.; Dubertret, B.; Pauw, B. R.; Pontoni, D. Real-time in situ probing of high-temperature quantum dots solution synthesis. Nano Lett. 2015, 15, 2620–2626.

    Article  Google Scholar 

  15. Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

    Article  Google Scholar 

  16. Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 2012, 336, 61–64.

    Article  Google Scholar 

  17. De Yoreo, J. J.; Sommerdijk, N. A. J. M. Investigating materials formation with liquid-phase and cryogenic TEM. Nat. Rev. Mater. 2016, 1, 16035.

    Article  Google Scholar 

  18. Shen, X. C.; Zhang, C. L.; Zhang, S. Y.; Dai, S.; Zhang, G. H.; Ge, M. Y.; Pan, Y. B.; Sharkey, S. M.; Graham, G. W.; Hunt, A. et al. Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations. Nat. Commun. 2018, 9, 4485.

    Article  Google Scholar 

  19. Sun, Y. G.; Zuo, X. B.; Sankaranarayanan, S. K. R. S.; Peng, S.; Narayanan, B.; Kamath, G. Quantitative 3D evolution of colloidal nanoparticle oxidation in solution. Science 2017, 356, 303–307.

    Article  Google Scholar 

  20. Bullen, C. R.; Mulvaney, P. Nucleation and growth kinetics of CdSe nanocrystals in octadecene. Nano Lett. 2004, 4, 2303–2307.

    Article  Google Scholar 

  21. Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J. et al. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 2007, 19, 548–552.

    Article  Google Scholar 

  22. Park, K.; Drummy, L. F.; Wadams, R. C.; Koerner, H.; Nepal, D.; Fabris, L.; Vaia, R. A. Growth mechanism of gold nanorods. Chem. Mater. 2013, 25, 555–563.

    Article  Google Scholar 

  23. Larsson, E. M.; Millet, J.; Gustafsson, S.; Skoglundh, M.; Zhdanov, V. P.; Langhammer, C. Real time indirect nanoplasmonic in situ spectroscopy of catalyst nanoparticle sintering. ACS Catal. 2012, 2, 238–245.

    Article  Google Scholar 

  24. Liu, Y.; Huang, C. Z. Real-time dark-field scattering microscopic monitoring of the in situ growth of single Ag@Hg nanoalloys. ACS Nano 2013, 7, 11026–11034.

    Article  Google Scholar 

  25. Su, H. P.; Dixon, J. D.; Wang, A. Y.; Low, J.; Xu, J.; Wang, J. K. Study on growth kinetics of CdSe nanocrystals with a new model. Nanoscale Res. Lett. 2010, 5, 823–828.

    Article  Google Scholar 

  26. Rempel, J. Y.; Bawendi, M. G.; Jensen, K. F. Insights into the kinetics of semiconductor nanocrystal nucleation and growth. J. Am. Chem. Soc. 2009, 131, 4479–4489.

    Article  Google Scholar 

  27. Varghese, N.; Biswas, K.; Rao, C. N. R. Investigations of the growth kinetics of capped CdSe and CdS nanocrystals by a combined use of small angle X-ray scattering and other techniques. Chem. Asian J. 2008, 3, 1435–1442.

    Article  Google Scholar 

  28. Talapin, D. V.; Rogach, A. L.; Haase, M.; Weller, H. Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J. Phys. Chem. B 2001, 105, 12278–12285.

    Article  Google Scholar 

  29. Liu, Q.; Gao, M. R.; Liu, Y. Z.; Okasinski, J. S.; Ren, Y.; Sun, Y. G. Quantifying the nucleation and growth kinetics of microwave nanochemistry enabled by in situ high-energy x-ray scattering. Nano Lett. 2016, 16, 715–720.

    Article  Google Scholar 

  30. Peng, S.; Okasinski, J. S.; Almer, J. D.; Ren, Y.; Wang, L.; Yang, W. G.; Sun, Y. G. Real-time probing of the synthesis of colloidal silver nanocubes with time-resolved high-energy synchrotron X-ray diffraction. J. Phys. Chem. C 2012, 116, 11842–11847.

    Article  Google Scholar 

  31. La Mer, V. K. Nucleation in phase transitions. Ind. Eng. Chem. 1952, 44, 1270–1277.

    Article  Google Scholar 

  32. Ostwald, W. Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Z. Phys. Chem. 1900, 34, 495–503.

    Google Scholar 

  33. Lifshitz, I. M.; Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35–50.

    Article  Google Scholar 

  34. Wagner, C. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z. Elektrochem 1961, 65, 581–591.

    Google Scholar 

  35. Watzky, M. A.; Finke, R. G. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: Slow, continuous nucleation and fast autocatalytic surface growth. J. Am. Chem. Soc. 1997, 119, 10382–10400.

    Google Scholar 

  36. Biskup, M.; Chayes, L.; Kotecký, R. A proof of the Gibbs—Thomson formula in the droplet formation regime. J. Stat. Phys. 2004, 116, 175–203.

    Article  Google Scholar 

  37. Borchert, H.; Shevchenko, E. V.; Robert, A.; Mekis, I.; Kornowski, A.; Grübel, G.; Weller, H. Determination of nanocrystal sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. Langmuir 2005, 21, 1931–1936.

    Article  Google Scholar 

  38. Pabisch, S.; Feichtenschlager, B.; Kickelbick, G.; Peterlik, H. Effect of interparticle interactions on size determination of zirconia and silica based systems—A comparison of SAXS, DLS, BET, XRD and TEM. Chem. Phys. Lett. 2012, 521, 91–97.

    Article  Google Scholar 

  39. Sun, Y. G. Watching nanoparticle kinetics in liquid. Mater. Today 2012, 15, 140–147.

    Article  Google Scholar 

  40. Özkar, S.; Finke, R. G. Silver nanoparticles synthesized by microwave heating: A kinetic and mechanistic re-analysis and re-interpretation. J. Phys. Chem. C 2017, 121, 27643–27654.

    Article  Google Scholar 

Download references

Acknowledgements

The Startup Fund from Temple University supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Sun, Y. An extreme-condition model for quantifying growth kinetics of colloidal metal nanoparticles. Nano Res. 12, 1339–1345 (2019). https://doi.org/10.1007/s12274-019-2297-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2297-8

Keywords

Navigation