Skip to main content
Log in

Full analytical solution of a nucleation-growth type kinetic model of nanoparticle formation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The analytical solution of a specific kinetic model describing nanoparticle formation is presented. The model starts from a monomer unit, two of which combine in a slow second-order seed formation reaction. The other process is second-order particle growth between a particle and a monomer unit, the rate constant of which is proportional to the mass of the growing nanoparticle. Exact analytical solutions are derived for the time dependence of the concentrations of all different kinds of nanoparticles. The average number of monomer units, the average size and polydispersity is also given by exact formulas. It is shown that the final size distribution of nanoparticles is described by a monotonically decreasing function under all conditions. Possibilities for the comparison of these modeling results with actual experimental data are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Baowan, K. Chayantrakom, P. Satiracoo, B.J. Cox, J. Math. Chem. 49, 1042–1053 (2011)

    Article  CAS  Google Scholar 

  2. R.K.F. Lee, J.M. Hill, J. Math. Chem. 50, 1289–1303 (2012)

    Article  CAS  Google Scholar 

  3. D. Baowan, V. Helms, J. Math. Chem. 53, 29–40 (2015)

    Article  CAS  Google Scholar 

  4. G. Chen, I. Roy, C. Yang, P.N. Prasad, Chem. Rev. 116, 2826–2885 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. D. Zámbó, S. Pothorszky, D.F. Brougham, A. Deák, RSC Adv. 6, 27151–27157 (2016)

    Article  CAS  Google Scholar 

  6. A. Devard, V.S. Aghemo, C.A.C. Dorantes, M. Gutierrez Arzaluz, F.A. Marchesini, M. Alicia Ulla, React. Kinet. Mech. Catal. 120, 39–54 (2017)

    Article  CAS  Google Scholar 

  7. M. Popova, Á. Szegedi, H. Lazarova, M. Dimitrov, Y. Kalvachev, G. Atanasova, A. Ristić, N. Wilde, R. Gläser, React. Kinet. Mech. Catal. 120, 55–67 (2017)

    Article  CAS  Google Scholar 

  8. C. Kinnear, T.L. Moore, L. Rodriguez-Lorenzo, B. Rothen-Rutishauser, A. Petri-Fink, Chem. Rev. 117, 11476–11521 (2017)

    Article  CAS  PubMed  Google Scholar 

  9. G. Shi, Y. Bao, B. Chen, J. Xu, React. Kinet. Mech. Catal. 122, 289–303 (2017)

    Article  CAS  Google Scholar 

  10. S.F. Tan, S.W. Chee, G. Lin, U. Mirsaidov, Acc. Chem. Res. 50, 1303–1312 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. C. Sronsri, C. Danvirutai, P. Noisong, React. Kinet. Mech. Catal. 121, 555–577 (2017)

    Article  CAS  Google Scholar 

  12. L. Xu, H.W. Liang, Y. Yang, S.H. Yu, Chem. Rev. 118, 3209–3250 (2018)

    Article  CAS  PubMed  Google Scholar 

  13. S.T. Hunt, Y. Román-Leshkov, Acc. Chem. Res. 51, 1054–1062 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. G. Panzarasa, A. Osypova, A. Sicher, A. Bruinink, E.R. Dufresne, Soft Matter 14, 6415–6418 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. A. Forgács, K. Moldován, P. Herman, E. Baranyai, I. Fábián, G. Lente, J. Kalmár, J. Phys. Chem. C (2018). https://doi.org/10.1021/acs.jpcc.8b04227

    Article  Google Scholar 

  16. K. Kang, S. Redner, P. Meakin, F. Leyvraz, Phys. Rev. A 33, 1171–1182 (1986)

    Article  CAS  Google Scholar 

  17. D.W. Schaefer, J.P. Wilcoxon, K.D. Keefer, B.C. Bunker, R.K. Pearson, I.M. Thomas, D.E. Miller, AIP Conf. Proc. 154, 63–80 (1987)

    Article  CAS  Google Scholar 

  18. B.J. McCoy, G. Madras, J. Colloid Interface Sci. 201, 200–209 (1998)

    Article  CAS  Google Scholar 

  19. B.J. McCoy, Chem. Eng. Sci. 57, 2279–2285 (2002)

    Article  CAS  Google Scholar 

  20. J.Y. Rempel, M.G. Bawendi, K.F. Jensen, J. Am. Chem. Soc. 131, 4479–4489 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Z. Szabó, in Comprehensive Chemical Kinetics, Volume 2. Theory of Kinetics, ed. by C.H. Bamford, C.F.H. Tipper (Elsevier, Amsterdam, 1969)

    Google Scholar 

  22. G. Lente, Deterministic Kinetics in Chemistry and Systems Biology (Springer, New York, 2015)

    Book  Google Scholar 

  23. M.L. Strekalov, J. Math. Chem. 53, 1313–1324 (2015)

    Article  CAS  Google Scholar 

  24. R. Tóbiás, G. Tasi, J. Math. Chem. 54, 85–99 (2016)

    Article  CAS  Google Scholar 

  25. H.Y. Alfifi, T.R. Marchant, M.I. Nelson, J. Math. Chem. 54, 1632–1657 (2016)

    Article  CAS  Google Scholar 

  26. G. Lente, J. Math. Chem. 55, 832–848 (2017)

    Article  CAS  Google Scholar 

  27. M. Rivallin, M. Benmami, A. Kanaev, A. Gaunand, Trans. IChemE A Chem. Eng. Res. Des. 83(A1), 67–74 (2005)

    Article  CAS  Google Scholar 

  28. G. Lente, I. Fábián, G. Bazsa, N. J. Chem. 31, 1707 (2007)

    Article  CAS  Google Scholar 

  29. A.K. Horváth, I. Nagypál, ChemPhysChem 16, 588–594 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. G. Lente, Phys. Chem. Chem. Phys. 9, 6134–6141 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. G. Lente, J. Phys. Chem. A 110, 12711–12713 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. S.S. Rane, P. Choi, Chem. Mater. 17, 926 (2005)

    Article  CAS  Google Scholar 

  33. S. Labidi, Z. Jia, M.B. Amar, K. Chhor, A. Kanaev, Phys. Chem. Chem. Phys. 17, 2651–2659 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was financed by the Higher Education Institutional Excellence Programme of the Ministry of Human Capacities in Hungary, within the framework of the 1st thematic programme of the University of Pécs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Lente.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabó, R., Lente, G. Full analytical solution of a nucleation-growth type kinetic model of nanoparticle formation. J Math Chem 57, 616–631 (2019). https://doi.org/10.1007/s10910-018-0975-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0975-5

Keywords

Navigation