Skip to main content
Log in

Ultrathin MoS2 with expanded interlayers supported on hierarchical polypyrrole-derived amorphous N-doped carbon tubular structures for high-performance Li/Na-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Layered molybdenum disulfide (MoS2) has received much attention as one of the most promising energy-storage and conversion materials for Li/Na ion batteries. Here, a simple and effective approach is proposed for the rational design and preparation of hierarchical three-d imensional (3D) amorphous N-doped carbon nanotube@MoS2 nanosheets (3D-ANCNT@MoS2) via a simple hydrothermal method, followed by an annealing process. With such a unique nanoarchitecture, ultrathin MoS2 nanosheets grown on the external surfaces of polypyrrole-derived ANCNTs are assembled to form a hierarchical 3D nanoarchitecture, where the adopted ANCNTs serve not only as the template and continuous conductive matrix, but can also prevent MoS2 from aggregating and restacking, and help to buffer the volumetric expansion of MoS2 during cycling. More importantly, when evaluated as an anode material for lithium-ion batteries, the 3D-ANCNT@MoS2 composite exhibits excellent cycling stability, superior rate performance, and reversible specific capacity as high as 893.4 mAh•g-1 at 0.2 A•g-1 after 200 cycles in a half battery, and 669.4 mAh•g-1 at 0.2 A•g-1 after 100 cycles in the 3D-ANCNT@MoS2//LiCoO2 full battery. With respect to sodium-ion batteries, the outstanding reversible capacity, excellent rate behavior, and good cycling performance of 3D-ANCNT@MoS2 composites are also achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogata, K.; Salager, E.; Kerr, C.; Fraser, A. E.; Ducati, C.; Morris, A. J.; Hofmann, S.; Grey, C. P. Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy. Nat. Commun. 2014, 5, 3217.

    Article  Google Scholar 

  2. Sun, W. Y.; Li, P.; Liu, X.; Shi, J. J.; Tao, H. M.; Li, F. J.; Chen, J. Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Res. 2017, 10, 2210–2222.

    Article  Google Scholar 

  3. Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868–1872.

    Article  Google Scholar 

  4. Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. S.; Huang, Y. H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.

    Article  Google Scholar 

  5. Chang, X. H.; Wang, T.; Liu, Z. L.; Zheng, X. Y.; Zheng, J.; Li, X. G. Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res. 2017, 10, 1950–1958.

    Article  Google Scholar 

  6. Park, G. O.; Yoon, J.; Shon, J. K.; Choi, Y. S.; Won, J. G.; Park, S. B.; Kim, K. H.; Yoon, W. S.; Kim, J. M. Discovering a dual-buffer effect for lithium storage: Durable nanostructured ordered mesoporous Co–Sn intermetallic electrodes. Adv. Funct. Mater. 2016, 26, 2800–2808.

    Article  Google Scholar 

  7. Zhu, C. L.; Chen, Z. X.; Zhu, S. M.; Li, Y.; Pan, H.; Meng, X.; Imtiaz, M.; Zhang, D. Construction of SnO2–graphene composite with half-supported cluster structure as anode toward superior lithium storage properties. Sci. Rep. 2017, 7, 3276.

    Article  Google Scholar 

  8. Zhao, X. J.; Wang, G.; Zhou, Y. X.; Wang, H. Flexible free-standing ternary CoSnO3/graphene/carbon nanotubes composite papers as anodes for enhanced performance of lithium-ion batteries. Energy 2017, 118, 172–180.

    Article  Google Scholar 

  9. Fan, H. H.; Li, H. H.; Huang, K. C.; Fan, C. Y.; Zhang, X. Y.; Wu, X. L.; Zhang, J. P. Metastable marcasite-FeS2 as a new anode material for lithium ion batteries: CNFsimproved lithiation/delithiation reversibility and Li-storage properties. ACS Appl. Mater. Interfaces 2017, 9, 10708–10716.

    Article  Google Scholar 

  10. Rout, C. S.; Kim, B. H.; Xu, X. D.; Yang, J.; Jeong, H. Y.; Odkhuu, D.; Park, N.; Cho, J.; Shin, H. S. Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer. J. Am. Chem. Soc. 2013, 135, 8720–8725.

    Article  Google Scholar 

  11. Youn, D. H.; Jo, C.; Kim, J. Y.; Lee, J.; Lee, J. S. Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries. J. Power Sources 2015, 295, 228–234.

    Article  Google Scholar 

  12. Zhang, Y. F.; Pan, A. Q.; Ding, L.; Zhou, Z. L.; Wang, Y. P.; Niu, S. Y.; Liang, S. Q.; Cao, G. Z. Nitrogen-doped Yolk–shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 3624–3633.

    Article  Google Scholar 

  13. Lin, Y. C.; Ghosh, R. K.; Addou, R.; Lu, N.; Eichfeld, S. M.; Zhu, H.; Li, M. Y.; Peng, X.; Kim, M.; Li, L. J. et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 2015, 6, 7311.

    Article  Google Scholar 

  14. Deng, Y. L.; Li, J. Y.; Li, T. H.; Zhang, J. Y.; Yang, F.; Yuan, C. Life cycle assessment of high capacity molybdenum disulfide lithium-ion battery for electric vehicles. Energy 2017, 123, 77–88.

    Article  Google Scholar 

  15. Fang, Y.; Lv, Y. Y.; Gong, F.; Elzatahry, A. A.; Zheng, G. F.; Zhao, D. Y. Synthesis of 2D-mesoporous-carbon/MoS2 heterostructures with well-defined interfaces for highperformance lithium-ion batteries. Adv. Mater. 2016, 28, 9385–9390.

    Article  Google Scholar 

  16. Wang, Y. W.; Yu, L.; Lou, X. W. D. Innenrücktitelbild: Synthesis of highly uniform molybdenum–glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew. Chem. 2016, 128, 7675–7675.

    Article  Google Scholar 

  17. Lee, W. S. V.; Peng, E.; Loh, T. A. J.; Huang, X. L.; Xue, J. M. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials. Nanoscale 2016, 8, 8042–8047.

    Article  Google Scholar 

  18. Xiong, X. Q.; Luo, W.; Hu, X. L.; Chen, C. J.; Qie, L.; Hou, D. F.; Huang, Y. H. Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci. Rep. 2015, 5, 9254.

    Article  Google Scholar 

  19. Wang, H. Y.; Ren, D. Y.; Zhu, Z. J.; Saha, P.; Jiang, H.; Li, C. Z. Few-layer MoS2 nanosheets incorporated into hierarchical porous carbon for lithium-ion batteries. Chem. Eng. J. 2016, 288, 179–184.

    Article  Google Scholar 

  20. Shan, T. T.; Xin, S.; You, Y.; Cong, H. P.; Yu, S. H. Combining nitrogen-doped graphene sheets and MoS2: A unique film–foam–film structure for enhanced lithium storage. Angew. Chem. 2016, 128, 12975–12980.

    Article  Google Scholar 

  21. Cai, Y. S.; Yang, H. L.; Zhou, J.; Luo, Z. G.; Fang, G. Z.; Liu, S. N.; Pin, A. Q.; Liang S. Q. Nitrogen doped hollow MoS2/C nanospheres as anode for long-life sodium-ion batteries. Chem. Eng. J. 2017, 327, 522–529.

    Article  Google Scholar 

  22. Park, S. K.; Lee, J.; Bong, S.; Jang, B.; Seong, K. D.; Piao, Y. Z. Scalable synthesis of few-layer MoS2 incorporated into hierarchical porous carbon nanosheets for highperformance Li- and Na-ion battery anodes. ACS Appl. Mater. Interfaces 2016, 8, 19456–19465.

    Article  Google Scholar 

  23. Ren, D. Y.; Hu, Y. J.; Jiang, H. B.; Deng, Z. N.; Petr, S.; Jiang, H.; Li, C. Z. Salt-templating protocol to realize fewlayered ultrasmall MoS2 nanosheets inlayed into carbon frameworks for superior lithium-ion batteries. ACS Sustainable Chem. Eng. 2016, 4, 1148–1153.

    Article  Google Scholar 

  24. Xu, X.; Tan, H.; Xi, K.; Ding, S. J.; Yu, D. M.; Cheng, S. D.; Yang, G.; Peng, X. Y.; Fakeeh, A.; Kumar, R. V. Bamboo-like amorphous carbon nanotubes clad in ultrathin nickel oxide nanosheets for lithium-ion battery electrodes with long cycle life. Carbon 2015, 84, 491–499.

    Article  Google Scholar 

  25. Qi, F.; He, J. R.; Chen, Y. F.; Zheng, B. J.; Li, Q.; Wang, X. Q.; Yu, B.; Lin, J.; Zhou, J. H.; Li, P. J. et al. Few-layered ReS2 nanosheets grown on carbon nanotubes: A highly efficient anode for high-performance lithium-ion batteries. Chem. Eng. J. 2017, 315, 10–17.

    Google Scholar 

  26. Xia, T.; Zhang, W.; Wang, Z. H.; Zhang, Y. L.; Song, X. Y.; Murowchick, J.; Battaglia, V.; Liu, G.; Chen, X. B. Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 2014, 6, 109–118.

    Article  Google Scholar 

  27. Xu, X.; Yu, D. M.; Zhou, H.; Zhang, L. S.; Xiao, C. H.; Guo, C. W.; Guo, S. W.; Ding, S. J. MoS2 nanosheets grown on amorphous carbon nanotubes for enhanced sodium storage. J. Mater. Chem. A 2016, 4, 4375–4379.

    Article  Google Scholar 

  28. Yu, X. Y.; Hu, H.; Wang, Y. W.; Chen, H. Y.; Lou, X. W. D. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 7395–7398.

    Article  Google Scholar 

  29. Qiu, W. D.; Xia, J.; He, S. X.; Xu, H. J.; Zhong, H. M.; Chen, L. P. Facile synthesis of hollow MoS2 microspheres/amorphous carbon composites and their lithium storage properties. Electrochim. Acta 2014, 117, 145–152.

    Article  Google Scholar 

  30. Wang, H.; Wang, L.; Wang, X. Y.; Quan, J. J.; Mi, L. F.; Yuan, L.; Li, G. P.; Zhang, B.; Zhong, H. H.; Jiang, Y. High quality MoSe2 nanospheres with superior electrochemical properties for sodium batteries. J. Electrochem. Soc. 2016, 163, A1627–A1632.

    Article  Google Scholar 

  31. Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. 2014, 126, 13008–13012.

    Article  Google Scholar 

  32. Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.

    Google Scholar 

  33. Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.

    Article  Google Scholar 

  34. Klein, F.; Pinedo, R.; Berkes, B. B.; Janek, J.; Adelhelm, P. Kinetics and degradation processes of CuO as conversion electrode for sodium-ion batteries: An electrochemical study combined with pressure monitoring and DEMS. J. Phys. Chem. C 2017, 121, 8679–8691.

    Article  Google Scholar 

  35. Longoni, G.; Cabrera, R. L. P.; Polizzi, S.; D’Arienzo, M.; Mari, C. M.; Cui, Y.; Ruffo, R. Shape-controlled TiO2 nanocrystals for Na-ion battery electrodes: The role of different exposed crystal facets on the electrochemical properties. Nano Lett. 2017, 17, 992–1000.

    Article  Google Scholar 

  36. Liu, Y.; Yang, Y. Z.; Wang, X. Z.; Dong, Y. F.; Tang, Y. C.; Yu, Z. F.; Zhao, Z. B.; Qiu, J. S. Flexible paper-like freestanding electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 15484–15491.

    Article  Google Scholar 

  37. Wang, Z.; Chen, T.; Chen, W. X.; Chang, K.; Ma, L.; Huang, G. C.; Chen, D. Y.; Lee, J. Y. CTAB-assisted synthesis of single-layer MoS2-graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A 2013, 1, 2202–2210.

    Article  Google Scholar 

  38. Chang, K.; Chen, W. X.; Ma, L.; Li, H.; Li, H.; Huang, F. H.; Xu, Z. D.; Zhang, Q. B.; Lee, J. Y. Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J. Mater. Chem. 2011, 21, 6251–6257.

    Article  Google Scholar 

  39. Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114.

    Article  Google Scholar 

  40. Jeon, I. Y.; Choi, H. J.; Tan, L. S.; Baek, J. B. Nanocomposite prepared from in situ grafting of polypyrrole to aminobenzoyl-functionalized multiwalled carbon nanotube and its electrochemical properties. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 2529–2537.

    Article  Google Scholar 

  41. Wu, T. M.; Chang, H. L.; Lin, Y. W. Synthesis and characterization of conductive polypyrrole with improved conductivity and processability. Polym. Int. 2009, 58, 1065–1070.

    Article  Google Scholar 

  42. Liu, S. S.; Zhang, X. B.; Shao, H.; Xu, J.; Chen, F. Y.; Feng, Y. Preparation of MoS2 nanofibers by electrospinning. Mater. Lett. 2012, 73, 223–225.

    Article  Google Scholar 

  43. Huang, K. J.; Wang, L.; Liu, Y. J.; Liu, Y. M.; Wang, H. B.; Gan, T.; Wang, L. L. Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance. Int. J. Hydrogen Energy 2013, 38, 14027–14034.

    Article  Google Scholar 

  44. Wang, Z. J.; Li, B.; Ge, X. M.; Goh, F. W. T.; Zhang, X.; Du, G. J.; Wuu, D.; Liu, Z. L.; Hor, T. S. A.; Zhang, H. et al. Co@Co3O4@PPD core@bishell nanoparticle-based composite as an efficient electrocatalyst for oxygen reduction reaction. Small 2016, 12, 2580–2587.

    Article  Google Scholar 

  45. Wang, B. B.; Zhang, Y.; Zhang, J.; Xia, R. Y.; Chu, Y. L.; Zhou, J. C.; Yang, X. W.; Huang, J. Facile synthesis of a MoS2 and functionalized graphene heterostructure for enhanced lithium-storage performance. ACS Appl. Mater. Interfaces 2017, 9, 12907–12913.

    Article  Google Scholar 

  46. Zhou, K. Q.; Liu, J. J.; Shi, Y. Q.; Jiang, S. H.; Wang, D.; Hu, Y.; Gui, Z. MoS2 nanolayers grown on carbon nanotubes: An advanced reinforcement for epoxy composites. ACS Appl. Mater. Interfaces 2015, 7, 6070–6081.

    Article  Google Scholar 

  47. Sun, W. Y.; Hu, Z.; Wang, C. Y.; Tao, Z. L.; Chou, S. L.; Kang, Y. M.; Liu, H. K. Effects of carbon content on the electrochemical performances of MoS2–C nanocomposites for Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 22168–22174.

    Article  Google Scholar 

  48. Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.

    Article  Google Scholar 

  49. Ren, W.; Li, D. J.; Liu, H.; Mi, R.; Zhang, Y.; Dong, L. Lithium storage performance of carbon nanotubes with different nitrogen contents as anodes in lithium ions batteries. Electrochim. Acta 2013, 105, 75–82.

    Article  Google Scholar 

  50. Pandey, K.; Yadav, P.; Mukhopadhyay, I. Electrochemical and electronic properties of flower-like MoS2 nanostructures in aqueous and ionic liquid media. RSC Adv. 2015, 5, 57943–57949.

    Article  Google Scholar 

  51. Zhou, R.; Han, C. J.; Wang, X. M. Hierarchical MoS2- coated three-dimensional graphene network for enhanced supercapacitor performances. J. Power Sources 2017, 352, 99–110.

    Article  Google Scholar 

  52. Zhou, Q.; Liu, L.; Huang, Z. F.; Yi, L. G.; Wang, X. Y.; Cao, G. Z. Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2016, 4, 5505–5516.

    Article  Google Scholar 

  53. Zhao, X. J.; Wang, H.; Zhai, G. H.; Wang, G. Facile assembly of 3D porous reduced graphene oxide/ultrathin MnO2 nanosheets-S aerogels as efficient polysulfide adsorption sites for high-performance lithium–sulfur batteries. Chem.—Eur. J. 2017, 23, 7037–7045.

    Article  Google Scholar 

  54. Qin, W.; Chen, T. Q.; Pan, L. K.; Niu, L. Y.; Hu, B. W.; Li, D. S.; Li, J. L.; Sun Z. MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim. Acta 2015, 153, 55–61.

    Article  Google Scholar 

  55. Zhang, X. Q.; Li, X. N.; Liang, J. W.; Zhu, Y. C.; Qian, Y. T. Synthesis of MoS2@C nanotubes via the Kirkendall effect with enhanced electrochemical performance for lithium ion and sodium ion batteries. Small 2016, 12, 2484–2491.

    Article  Google Scholar 

  56. Chen, R. J.; Zhao, T.; Wu, W. P.; Wu, F.; Li, L.; Qian, J.; Xu, R.; Wu, H. M.; Albishiri, H. M.; Al-Bogami, A. S. et al. Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett. 2014, 14, 5899–5904.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51672213) and the Natural Science Foundation of Shaanxi Province (Nos. 2017ZDCXL-GY-08-01 and 2017JM2025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojie Liu or Hui Wang.

Electronic supplementary material

12274_2017_1927_MOESM1_ESM.pdf

Ultrathin MoS2 with expanded interlayers supported on hierarchical polypyrrole-derived amorphous N-doped carbon tubular structures for high-performance Li/Na-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wang, G., Liu, X. et al. Ultrathin MoS2 with expanded interlayers supported on hierarchical polypyrrole-derived amorphous N-doped carbon tubular structures for high-performance Li/Na-ion batteries. Nano Res. 11, 3603–3618 (2018). https://doi.org/10.1007/s12274-017-1927-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1927-2

Keywords

Navigation