Skip to main content
Log in

Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 12 May 2018

This article has been updated

Abstract

Despite recent progress in the synthesis and application of graphene-based aerogels, some challenges such as scalable and cost-effective production, and miniaturization still remain, which hinder the practical application of these materials. Here we report a large-scale electrospinning method to generate graphene-based aerogel microspheres (AMs), which show broadband, tunable and high-performance microwave absorption. Graphene/Fe3O4 AMs with a large number of openings with hierarchical connecting radial microchannels can be obtained via electrospinning-freeze drying followed by calcination. Importantly, for a given Fe3O4:graphene mass ratio, altering the shape of aerogel monoliths or powders into aerogel microspheres leads to unique electromagnetic wave properties. As expected, the reflection loss of graphene/Fe3O4 AMs-1:1 with only 5 wt.% absorber loading reaches −51.5 dB at 9.2 GHz with a thickness of 4.0 mm and a broad absorption bandwidth (RL < −10 dB) of 6.5 GHz. Furthermore, switching to coaxial electrospinning enables the fabrication of SiO2 coatings to construct graphene/Fe3O4@SiO2 core‒shell AMs. The coatings influence the electromagnetic wave absorption of graphene/Fe3O4 AMs significantly. In view of these advantages, we believe that this processing technique may be extended to fabricate a wide range of unique graphene-based architectures for functional design and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 12 May 2018

    The name of the third author in the original version of this article was unfortunately wrongly written on the first pages of the main text and the ESM.

References

  1. Pan, Y. F.; Wang, G. S.; Liu, L.; Guo, L.; Yu, S. H. Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 2017, 10, 284–294.

    Article  Google Scholar 

  2. Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489.

    Article  Google Scholar 

  3. Wu, B.; Tuncer, H. M.; Katsounaros, A.; Wu, W. P.; Cole, M. T.; Ying, K.; Zhang, L. H.; Milne, W. I.; Hao, Y. Microwave absorption and radiation from large-area multilayer CVD graphene. Carbon 2014, 77, 814–822.

    Article  Google Scholar 

  4. Cao, M. S.; Wang, X. X.; Cao, W. Q.; Yuan, J. Ultrathin graphene: Electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 2015, 3, 6589–6599.

    Article  Google Scholar 

  5. Meng, F. B.; Wei, W.; Chen, J. J.; Chen, X. N.; Xu, X. L.; Jiang, M.; Jun, L.; Zhou, Z. W. Growth of Fe3O4 nanosheet arrays on graphene by a mussel-inspired polydopamine adhesive for remarkable enhancement in electromagnetic absorptions. RSC Adv. 2015, 5, 101121–101126.

    Article  Google Scholar 

  6. Ding, Y.; Zhang, Z.; Luo, B. H.; Liao, Q. L.; Liu, L.; Liu, Y. C.; Zhang, Y. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite.Nano Res. 2017, 10, 980–990.

    Article  Google Scholar 

  7. Li, Y.A.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption.Nano Res. 2016, 9, 2034–2045.

    Article  Google Scholar 

  8. Yang, W. L.; Gao, Z.; Wang, J.; Ma, J.; Zhang, M. L.; Liu, L. H. Solvothermal one-step synthesis of Ni-Al layered double hydroxide/carbon nanotube/reduced graphene oxide sheet ternary nanocomposite with ultrahigh capacitance for supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 5443–5454.

    Article  Google Scholar 

  9. Lee, S. H.; Sridhar, V.; Jung, J. H.; Karthikeyan, K.; Lee, Y. S.; Mukherjee, R.; Koratkar, N.; Oh, I. K. Graphene-nanotube-iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 2013, 7, 4242–4251.

    Article  Google Scholar 

  10. Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. C. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

    Article  Google Scholar 

  11. Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

    Article  Google Scholar 

  12. Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053.

    Article  Google Scholar 

  13. Zhang, Y.; Huang, Y.; Chen, H. H.; Huang, Z. Y.; Yang, Y.; Xiao, P. S.; Zhou, Y.; Chen, Y. S. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016, 105, 438–447.

    Article  Google Scholar 

  14. Shen, B.; Li, Y.; Yi, D.; Zhai, W. T.; Wei, X. C.; Zheng, W. G. Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 2016, 102, 154–160.

    Article  Google Scholar 

  15. Fang, Z. G.; Cao, X. M.; Li, C. S.; Zhang, H. T.; Zhang, J. S.; Zhang, H. Y. Investigation of carbon foams as microwave absorber: Numerical prediction and experimental validation. Carbon 2006, 44, 3368–3370.

    Article  Google Scholar 

  16. Wang, C. H.; Ding, Y. J.; Yuan, Y.; He, X. D.; Wu, X. T.; Hu, S.; Zou, M. C.; Zhao, W. H.; Yang, L. S.; Cao, A. Y. et al. Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. J. Mater. Chem. C 2015, 3, 11893–11901.

    Article  Google Scholar 

  17. Wu, Y.; Wang, Z. Y.; Liu, X.; Shen, X.; Zheng, Q. B.; Xue, Q.; Kim, J. K. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2017, 9, 9059–9069.

    Article  Google Scholar 

  18. Liu, B.; Li, J. H.; Wang, L. F.; Ren, J. H.; Xu, Y. F. Ultralight graphene aerogel enhanced with transformed micro-structure led by polypyrrole nano-rods and its improved microwave absorption properties. Comp Part A: Appl. Sci. Manufact. 2017, 97, 141–150.

    Article  Google Scholar 

  19. Song, C. Q.; Yin, X. W.; Han, M. K.; Li, X. L.; Hou, Z. X.; Zhang, L. T.; Cheng, L. F. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 2017, 116, 50–58.

    Article  Google Scholar 

  20. Han, M. K.; Yin, X. W.; Hou, Z. X.; Song, C. Q.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2017, 9, 11803–11810.

    Article  Google Scholar 

  21. Liu, W. W.; Li, H.; Zeng, Q. P.; Duan, H. N.; Guo, Y. P.; Liu, X. F.; Sun, C. Y.; Liu, H. Z. Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J. Mater. Chem. A 2015, 3, 3739–3747.

    Article  Google Scholar 

  22. Ouyang, A.; Cao, A. Y.; Hu, S.; Li, Y. H.; Xu, R. Q.; Wei, J. Q.; Zhu, H. W.; Wu, D. H. Polymer-coated graphene aerogel beads and supercapacitor application. ACS Appl. Mater. Interfaces 2016, 8, 11179–11187.

    Article  Google Scholar 

  23. Wang, J.; Shang, L. R.; Cheng, Y.; Ding, H. B.; Zhao, Y. J.; Gu, Z. Z. Microfluidic generation of porous particles encapsulating spongy graphene for oil absorption. Small 2015, 11, 3890–3895.

    Article  Google Scholar 

  24. Liao, S. C.; Zhai, T. L; Xia, H. S. Highly adsorptive graphene aerogel microspheres with center-diverging microchannel structures. J. Mater. Chem. A 2016, 4, 1068–1077.

    Article  Google Scholar 

  25. Zhao, C. Z.; Fan, J.; Chen, D.; Xu, Y.; Wang, T. Microfluidics-generated graphene oxide microspheres and their application to removal of perfluorooctane sulfonate from polluted water. Nano Res. 2016, 9, 866–875.

    Article  Google Scholar 

  26. Guo, P.; Song, H. H.; Chen, X. H. Hollow graphene oxide spheres self-assembled by W/O emulsion. J. Mater. Chem. 2010, 20, 4867–4874.

    Article  Google Scholar 

  27. Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C. B.; Liu, T. X. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl. Mater. Interfaces 2013, 5, 3382–3391.

    Article  Google Scholar 

  28. Melcher, J. R; Taylor, G. I. Electrohydrodynamics: A review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1969, 1, 111–146.

    Article  Google Scholar 

  29. Guo, M.; Ding, B.; Li, X. H.; Wang, X. L.; Yu, J. Y.; Wang, M. R. Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties.J. Phys. Chem. C 2010, 114, 916–921.

    Article  Google Scholar 

  30. Zou, J. L.; Kim, F. K. Diffusion driven layer-by-layer assembly of graphene oxide nanosheets into porous three-dimensional macrostructures. Nat. Commun. 2014, 5, 5254.

    Article  Google Scholar 

  31. Kumar, R.; Singh, R. K.; Vaz, A. R.; Savu, R.; Moshkalev, S. A. Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 2017, 9, 8880–8890.

    Article  Google Scholar 

  32. Jian, X.; Wu, B.; Wei, Y. F.; Dou, S. X.; Wang, X. L.; He, W. D.; Mahmood, N. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 6101–6109.

    Article  Google Scholar 

  33. Huang, H.; Chen, P. W.; Zhang, X. T.; Lu, Y.; Zhan, W. C. Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity. Small 2013, 9, 1397–1404.

    Article  Google Scholar 

  34. Abdelrazek, E. M. Influence of FeCl3 filler on the structure and physical properties of polyethyl-methacrylate films. Phys. B:Condens. Matter 2007, 400, 26–32.

    Article  Google Scholar 

  35. Xiao, L.; Wu, D. Q.; Han, S.; Huang, Y. S.; Li, S.; He, M. Z.; Zhang, F.; Feng, X. L. Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl. Mater. Interfaces 2013, 5, 3764–3769.

    Article  Google Scholar 

  36. Xu, X.; Li, H.; Zhang, Q. Q.; Hu, H.; Zhao, Z. B.; Li, J. H.; Li, J. Y.; Qiao, Y.; Gogotsi, Y. Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field. ACS Nano 2015, 9, 3969–3977.

    Article  Google Scholar 

  37. Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 2017, 10, 1595–1607.

    Article  Google Scholar 

  38. Wu, F.; Xie A. M.; Sun, M. X.; Wang, Y.; Wang, M. W. Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A 2015, 3, 14358–14369.

    Article  Google Scholar 

  39. Xie, A. M.; Jiang, W. C.; Wu, F.; Dai, X. Q.; Sun, M. X.; Wang, Y.; Wang, M. Y. Interfacial synthesis of polypyrrole microparticles for effective dissipation of electromagnetic waves. J. Appl. Phys. 2015, 118, 204105.

    Article  Google Scholar 

  40. Lu, M. M.; Cao, W. Q.; Shi, H. L.; Fang, X. Y.; Yang, J.; Hou, Z. L.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2014, 2, 10540–10547.

    Article  Google Scholar 

  41. Meng, F. B.; Wei, W.; Chen, X. G.; Xu, X. L.; Jiang, M.; Jun, L.; Wang Y.; Zhou, Z. W. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Chem. Phys. 2016, 18, 2510–2516.

    Article  Google Scholar 

  42. Wu, T.; Liu, Y.; Zeng, X.; Cui, T. T.; Zhao, Y. T.; Li, Y. N.; Tong, G. X. Facile hydrothermal synthesis of Fe3O4/C core−shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 2016, 8, 7370–7380.

    Article  Google Scholar 

  43. Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.

    Article  Google Scholar 

  44. Michielssen, E.; Sajer, J, M.; Ranjithan, S.; Mittra, R. Design of lightweight, broad-band microwave absorbers using genetic algorithms. IEEE Trans. Microw. Theory Techmol. 1993, 41, 1024–1031.

    Article  Google Scholar 

  45. Liu, Z. F.; Bai, G.; Huang, Y.; Li, F. F.; Ma, Y. F.; Guo, T. Y.; He, X. B.; Lin, X.; Gao, H. J.; Chen, Y. S. Microwave absorption of single-walled carbon nanotubes/soluble crosslinked polyurethane composites. J. Phys. Chem. C 2007, 111, 13696–13700.

    Article  Google Scholar 

  46. Zhao, B.; Guo, X. Q.; Zhao, W. Y.; Deng, J. S.; Fan, B. B.; Shao, G.; Bai, Z. Y.; Zhang, R. Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 2017, 10, 331–343.

    Article  Google Scholar 

  47. Liu, X. G.; Ou, Z. Q.; Geng, D. Y.; Han, Z.; Xie, Z. G.; Zhang, Z. D. Enhanced natural resonance and attenuation properties in superparamagnetic graphite-coated FeNi3 nanocapsules. J. Phys. D: Appl. Phys. 2009, 42, 155004.

    Article  Google Scholar 

  48. Liang, C. Y.; Gou, Y. J.; Wu, L. N.; Zhou, J. G.; Kang, Z. Y.; Shen, B. Z.; Wang, Z. J. Nature of electromagnetic-transparent SiO2 shell in hybrid nanostructure enhancing electromagnetic attenuation. J. Phys. Chem. C 2016, 120, 12967–12973.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51573149), the Science and Technology Planning Project of Sichuan Province (No. 2016GZ0224), the Fundamental Research Funds for the Central Universities (No. 2682016CX069) and the Student Research Training Program (No. 2017005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuowan Zhou.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s12274-017-1949-9.

Electronic supplementary material

12274_2017_1915_MOESM1_ESM.pdf

Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Wang, H., Wei et al. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Res. 11, 2847–2861 (2018). https://doi.org/10.1007/s12274-017-1915-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1915-6

Keywords

Navigation