Skip to main content
Log in

Conjugated polymer-mediated synthesis of sulfur- and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heteroatom-doped carbon nanomaterials have attracted significant attention as anode materials for sodium-ion batteries (SIBs). Herein, we demonstrate a conjugated polymer-mediated synthesis of sulfur and nitrogen co-doped carbon nanotubes (S/N-CT) via the carbonization of sulfur-containing polyaniline (PANI) nanotubes. It is found that the carbonization technique greatly influences the structural features and thus the Na-storage behavior of the S/N-CT materials. The carbon nanotubes developed using a two-step carbonization process (heating at 400 °C and then at 900 °C) exhibit a high specific surface area, enlarged interlayer distance, small charge transfer resistance, enhanced reaction kinetics, as well as a large number of defects and active sites; further, they exhibit a high reversible capacity of 340 mAh·g–1 at 0.1 A·g–1 and a remarkable cycling stability with a capacity of 141 mAh·g–1 at 5 A·g–1 (94% retention after 3,000 cycles). Direct carbonization of conjugated polymers with a specific morphology is an eco-friendly and low-cost technique for the synthesis of dual atom-doped carbon nanomaterials for application in energy devices. However, the carbonization process should be carefully controlled in order to better tune the structure–property relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qu, G. X.; Cheng, J. L.; Li, X. D.; Yuan, D. M.; Chen, P. N.; Chen, X. L.; Wang, B.; Peng, H. S. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 2016, 28, 3646–3652.

    Article  Google Scholar 

  2. Pan, S. W.; Ren, J.; Fang, X.; Peng, H. S. Integration: An effective strategy to develop multifunctional energy storage devices. Adv. Energy Mater. 2016, 6, 1501867.

    Article  Google Scholar 

  3. Ni, J. F.; Wang, W. C.; Wu, C.; Liang, H. C.; Maier, J.; Yu, Y.; Li, L. Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv. Mater. 2017, 29, 1605607.

    Article  Google Scholar 

  4. Zhang, N.; Liu, Y. C.; Lu, Y. Y.; Han, X. P.; Cheng, F. Y.; Chen, J. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384–3393.

    Article  Google Scholar 

  5. Zhao, F. P.; Gong, Q. F.; Traynor, B.; Zhang, D.; Li, J. J.; Ye, H. L.; Chen, F. J.; Han, N.; Wang, Y. Y.; Sun, X. H. et al. Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries. Nano Res. 2016, 9, 3162–3170.

    Article  Google Scholar 

  6. Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodiumion batteries. Adv. Energy Mater. 2016, 6, 1600943.

    Article  Google Scholar 

  7. You, Y.; Yao, H. R.; Xin, S.; Yin, Y. X.; Zuo, T. T.; Yang, C. P.; Guo, Y. G.; Cui, Y.; Wan, L. J.; Goodenough, J. B. Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 2016, 28, 7243–7248.

    Article  Google Scholar 

  8. Zhao, Y.; Zhang, Y.; Sun, H.; Dong, X. L.; Cao, J. Y.; Wang, L.; Xu, Y. F.; Ren, J.; Hwang, Y.; Son, I. H. et al. A self-healing aqueous lithium-ion battery. Angew. Chem., Int. Ed. 2016, 55, 14384–14388.

    Article  Google Scholar 

  9. Fu, S. D.; Ni, J. F.; Xu, Y.; Zhang, Q.; Li, L. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett. 2016, 16, 4544–4551.

    Article  Google Scholar 

  10. Roh, H. K.; Kim, H. K.; Kim, M. S.; Kim, D. H.; Chung, K. Y.; Roh, K. C.; Kim, K. B. In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 2016, 9, 1844–1855.

    Article  Google Scholar 

  11. You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. W.; Guo, Y. G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128.

    Article  Google Scholar 

  12. Li, L.; Seng, K. H.; Li, D.; Xia, Y. Y.; Liu, H. K.; Guo, Z. P. SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Res. 2014, 7, 1466–1476.

    Article  Google Scholar 

  13. Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

    Article  Google Scholar 

  14. Cho, J. S.; Park, J. S.; Kang, Y. C. Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res. 2017, 10, 897–907.

    Article  Google Scholar 

  15. Shao, Y. Y.; Xiao, J.; Wang, W.; Engelhard, M.; Chen, X. L.; Nie, Z. M.; Gu, M.; Saraf, L. V.; Exarhos, G.; Zhang, J. G. et al. Surface-driven sodium ion energy storage in nanocellular carbon foams. Nano Lett. 2013, 13, 3909–3914.

    Article  Google Scholar 

  16. Wu, L. J.; Lang, J. W.; Zhang, P.; Zhang, X.; Guo, R. S.; Yan, X. B. Mesoporous Ni-doped MnCo2O4 hollow nanotubes as an anode material for sodium ion batteries with ultralong life and pseudocapacitive mechanism. J. Mater. Chem. A 2016, 4, 18392–18400.

    Article  Google Scholar 

  17. Zhang, Y.; Wang, C. W.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 2017, 7, 1600173.

    Article  Google Scholar 

  18. Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M.-M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

    Article  Google Scholar 

  19. Yan, Y.; Yin, Y.-X.; Guo, Y.-G.; Wan, L.-J. A sandwich-like hierarchically porous carbon/graphene composite as a highperformance anode material for sodium-ion batteries. Adv. Energy Mater. 2014, 4, 1301584.

    Article  Google Scholar 

  20. Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042–2048.

    Article  Google Scholar 

  21. Li, D. D.; Zhang, L.; Chen, H. B.; Wang, J.; Ding, L.-X.; Wang, S. Q.; Ashman, P. J.; Wang, H. H. Graphene-based nitrogen-doped carbon sandwich nanosheets: A new capacitive process controlled anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 2016, 4, 8630–8635.

    Article  Google Scholar 

  22. Wang, S. Q.; Xia, L.; Yu, L.; Zhang, L.; Wang, H. H.; Lou, X. W. D. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 2016, 6, 1502217.

    Article  Google Scholar 

  23. Yun, Y. S.; Park, Y.-U.; Chang, S.-J.; Kim, B. H.; Choi, J.; Wang, J. J.; Zhang, D.; Braun, P. V.; Jin, H.-J.; Kang, K. Crumpled graphene paper for high power sodium battery anode. Carbon 2016, 99, 658–664.

    Article  Google Scholar 

  24. Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866.

    Article  Google Scholar 

  25. Chien, C. T.; Hiralal, P.; Wang, D. Y.; Huang, I. S.; Chen, C. C.; Chen, C. W.; Amaratunga, G. A. J. Graphene-based integrated photovoltaic energy harvesting/storage device. Small 2015, 11, 2929–2937.

    Article  Google Scholar 

  26. Kotal, M.; Kim, J.; Kim, K. J.; Oh, I. K. Sulfur and nitrogen co-doped graphene electrodes for high-performance ionic artificial muscles. Adv. Mater. 2016, 28, 1610–1615.

    Article  Google Scholar 

  27. Yang, J. Q.; Zhou, X. L.; Wu, D. H.; Zhao, X. D.; Zhou, Z. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 2017, 29, 1604108.

    Article  Google Scholar 

  28. Xu, D. F.; Chen, C. J.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y. H.; Zhang, L. N. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501929.

    Article  Google Scholar 

  29. Ye, J. C.; Zang, J.; Tian, Z. W.; Zheng, M. S.; Dong, Q. F. Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance. J. Mater. Chem. A 2016, 4, 13223–13227.

    Article  Google Scholar 

  30. Qiao, Y.; Ma, M. Y.; Liu, Y.; Li, S.; Lu, Z. S.; Yue, H. Y.; Dong, H. Y.; Cao, Z. X.; Yin, Y. H.; Yang, S. T. Firstprinciples and experimental study of nitrogen/sulfur co-doped carbon nanosheets as anodes for rechargeable sodium ion batteries. J. Mater. Chem. A 2016, 4, 15565–15574.

    Article  Google Scholar 

  31. Yang, C. L.; Li, W. H.; Yang, Z. Z.; Gu, L.; Yu, Y. Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries. Nano Energy 2015, 18, 12–19.

    Article  Google Scholar 

  32. Li, W.; Zhou, M.; Li, H. M.; Wang, K. L.; Cheng, S. J.; Jiang, K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 2015, 8, 2916–2921.

    Article  Google Scholar 

  33. Luo, C.; Zhu, Y. J.; Borodin, O.; Gao, T.; Fan, X. L.; Xu, Y. H.; Xu, K.; Wang, C. S. Activation of oxygen-stabilized sulfur for Li and Na batteries. Adv. Funct. Mater. 2016, 26, 745–752.

    Article  Google Scholar 

  34. Li, S.; Wu, D. Q.; Liang, H. W.; Wang, J. Z.; Zhuang, X. D.; Mai, Y. Y.; Su, Y. Z.; Feng, X. L. Metal-nitrogen doping of mesoporous carbon/graphene nanosheets by self-templating for oxygen reduction electrocatalysts. ChemSusChem 2014, 7, 3002–3006.

    Article  Google Scholar 

  35. Wan, K.; Long, G.-F.; Liu, M.-Y.; Du, L.; Liang, Z.-X.; Tsiakaras, P. Nitrogen-doped ordered mesoporous carbon: Synthesis and active sites for electrocatalysis of oxygen reduction reaction. Appl. Catal. B-Environ. 2015, 165, 566–571.

    Article  Google Scholar 

  36. He, Y. Z.; Han, X. J.; Du, Y. C.; Song, B.; Xu, P.; Zhang, B. Bifunctional nitrogen-doped microporous carbon microspheres derived from poly(o-methylaniline) for oxygen reduction and supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 3601–3608.

    Article  Google Scholar 

  37. Xu, P.; Han, X. J.; Zhang, B.; Du, Y. C.; Wang, H.-L. Multifunctional polymer-metal nanocomposites via direct chemical reduction by conjugated polymers. Chem. Soc. Rev. 2014, 43, 1349–1360.

    Article  Google Scholar 

  38. Xiao, L. F.; Cao, Y. L.; Henderson, W. A.; Sushko, M. L.; Shao, Y. Y.; Xiao, J.; Wang, W.; Engelhard, M. H.; Nie, Z. M.; Liu, J. Hard carbon nanoparticles as high-capacity, highstability anodic materials for Na-ion batteries. Nano Energy 2016, 19, 279–288.

    Article  Google Scholar 

  39. He, Y. Z.; Han, X. J.; Du, Y. C.; Zhang, B.; Xu, P. Heteroatom-doped carbon nanostructures derived from conjugated polymers for energy applications. Polymers 2016, 8, 366.

    Article  Google Scholar 

  40. Liu, H.; Jia, M. Q.; Sun, N.; Cao, B.; Chen, R. J.; Zhu, Q. Z.; Wu, F.; Qiao, N.; Xu, B. Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 27124–27130.

    Article  Google Scholar 

  41. Zhang, Z. A.; Zhang, J.; Zhao, X. X.; Yang, F. H. Coresheath structured porous carbon nanofiber composite anode material derived from bacterial cellulose/polypyrrole as an anode for sodium-ion batteries. Carbon 2015, 95, 552–559.

    Article  Google Scholar 

  42. Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.

    Article  Google Scholar 

  43. He, J. J.; To, J. W. F.; Psarras, P. C.; Yan, H. P.; Atkinson, T.; Holmes, R. T.; Nordlund, D.; Bao, Z. N.; Wilcox, J. Tunable polyaniline-based porous carbon with ultrahigh surface area for CO2 capture at elevated pressure. Adv. Energy Mater. 2016, 6, 1502491.

    Article  Google Scholar 

  44. Kang, Z. P.; Jiao, K. L.; Peng, R. Y.; Hu, Z. Q.; Jiao, S. Q. Al-based porous coordination polymer derived nanoporous carbon for immobilization of glucose oxidase and its application in glucose/O2 biofuel cell and biosensor. RSC Adv. 2017, 7, 11872–11879.

    Article  Google Scholar 

  45. Silvestre-Albero, A.; Silvestre-Albero, J.; Martínez-Escandell, M.; Rodríguez-Reinoso, F. Micro/mesoporous activated carbons derived from polyaniline: Promising candidates for CO2 adsorption. Ind. Eng. Chem. Res. 2014, 53, 15398–15405.

    Article  Google Scholar 

  46. Inagaki, M.; Sakamoto, K. I.; Hishiyama, Y. Carbonization and graphitization of polyimide upilex. J. Mater. Res. 1991, 6, 1108–1113.

    Article  Google Scholar 

  47. Yang, X. M.; Zhu, Z. X.; Dai, T. Y.; Lu, Y. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol. Rapid Comm. 2005, 26, 1736–1740.

    Article  Google Scholar 

  48. Mi, H. Y.; Zhang, X. G.; Yang, S. D.; Ye, X. G.; Luo, J. M. Polyaniline nanofibers as the electrode material for supercapacitors. Mater. Chem. Phys. 2008, 112, 127–131.

    Article  Google Scholar 

  49. Dubal, D. P.; Chodankar, N. R.; Caban-Huertas, Z.; Wolfart, F.; Vidotti, M.; Holze, R.; Lokhande, C. D.; Gomez-Romero, P. Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. J. Power Sources 2016, 308, 158–165.

    Article  Google Scholar 

  50. Tian, G.-L.; Zhang, Q.; Zhang, B. S.; Jin, Y.-G.; Huang, J.-Q.; Su, D. S.; Wei, F. Toward full exposure of “active sites”: Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 24, 5956–5961.

    Article  Google Scholar 

  51. Langer, J. J.; Golczak, S. Highly carbonized polyaniline micro- and nanotubes. Polym. Degrad. Stabil. 2007, 92, 330–334.

    Article  Google Scholar 

  52. Li, M. Y.; Carter, R.; Oakes, L.; Douglas, A.; Muralidharan, N.; Pint, C. L. Role of carbon defects in the reversible alloying states of red phosphorus composite anodes for efficient sodium ion batteries. J. Mater. Chem. A 2017, 5, 5266–5272.

    Article  Google Scholar 

  53. Zhang, Z.; Wan, M.; Wei, Y. Highly crystalline polyaniline nanostructures doped with dicarboxylic acids. Adv. Funct. Mater. 2006, 16, 1100–1104.

    Article  Google Scholar 

  54. Panomsuwan, G.; Saito, N.; Ishizaki, T. Simple one-step synthesis of fluorine-doped carbon nanoparticles as potential alternative metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 9972–9981.

    Article  Google Scholar 

  55. Panchakarla, L. S.; Govindaraj, A.; Rao, C. N. R. Nitrogenand boron-doped double-walled carbon nanotubes. ACS Nano 2007, 1, 494–500.

    Article  Google Scholar 

  56. Wang, H. G.; Wu, Z.; Meng, F. L.; Ma, D. L.; Huang, X. L.; Wang, L. M.; Zhang, X. B. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 2013, 6, 56–60.

    Article  Google Scholar 

  57. Liu, H.; Jia, M. Q.; Cao, B.; Chen, R. J.; Lv, X. Y.; Tang, R. J.; Wu, F.; Xu, B. Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability. J. Power Sources 2016, 319, 195–201.

    Article  Google Scholar 

  58. Li, Z.; Xu, Z. W.; Tan, X. H.; Wang, H. L.; Holt, C. M. B.; Stephenson, T.; Olsen, B. C.; Mitlin, D. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci. 2013, 6, 871–878.

    Article  Google Scholar 

  59. Zhu, J. D.; Chen, C.; Lu, Y.; Ge, Y. Q.; Jiang, H.; Fu, K.; Zhang, X. W. Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 2015, 94, 189–195.

    Article  Google Scholar 

  60. Yan, J.; Wang, Q.; Lin, C. P.; Wei, T.; Fan, Z. J. Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances. Adv. Energy Mater. 2014, 4, 1400500.

    Article  Google Scholar 

  61. Xu, G. Y.; Han, J. P.; Ding, B.; Nie, P.; Pan, J.; Dou, H.; Li, H. S.; Zhang, X. G. Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 2015, 17, 1668–1674.

    Article  Google Scholar 

  62. Yang, C. P.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Electrochemical (de)lithiation of 1D sulfur chains in Li-S batteries: A model system study. J. Am. Chem. Soc. 2015, 137, 2215–2218.

    Article  Google Scholar 

  63. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  Google Scholar 

  64. Sharifi, T.; Hu, G. Z.; Jia, X. E.; Wågberg, T. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 2012, 6, 8904–8912.

    Article  Google Scholar 

  65. Xu, Z. X.; Zhuang, X. D.; Yang, C. Q.; Cao, J.; Yao, Z. Q.; Tang, Y. P.; Jiang, J. Z.; Wu, D. Q.; Feng, X. L. Nitrogendoped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 2016, 28, 1981–1987.

    Article  Google Scholar 

  66. Pan, Z. Y.; Ren, J.; Guan, G. Z.; Fang, X.; Wang, B. J.; Doo, S.-G.; Son, I. H.; Huang, X. L.; Peng, H. S. Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries. Adv. Energy Mater. 2016, 6, 1600271.

    Article  Google Scholar 

  67. Li, D. D.; Chen, H. B.; Liu, G. X.; Wei, M.; Ding, L.-X.; Wang, S. Q.; Wang, H. H. Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 2015, 94, 888–894.

    Article  Google Scholar 

  68. Wang, Z. H.; Qie, L.; Yuan, L. X.; Zhang, W. X.; Hu, X. L.; Huang, Y. H. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 2013, 55, 328–334.

    Article  Google Scholar 

  69. Fu, L. J.; Tang, K.; Song, K. P.; van Aken, P. A.; Yu, Y.; Maier, J. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 2014, 6, 1384–1389.

    Article  Google Scholar 

  70. Yang, F. H.; Zhang, Z. A.; Du, K.; Zhao, X. X.; Chen, W.; Lai, Y. Q.; Li, J. Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon 2015, 91, 88–95.

    Article  Google Scholar 

  71. Shin, W. H.; Jeong, H. M.; Kim, B. G.; Kang, J. K.; Choi, J. W. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 2012, 12, 2283–2288.

    Article  Google Scholar 

  72. Yan, D.; Yu, C. Y.; Zhang, X. J.; Qin, W.; Lu, T.; Hu, B. W.; Li, H. L.; Pan, L. K. Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochimi. Acta 2016, 191, 385–391.

    Article  Google Scholar 

  73. Yan, D.; Xu, X. T.; Lu, T.; Hu, B. W.; Chua, D. H. C.; Pan, L. K. Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode material for sodium-ion batteries. J. Power Sources 2016, 316, 132–138.

    Article  Google Scholar 

  74. Li, S.; Qiu, J. X.; Lai, C.; Ling, M.; Zhao, H. J.; Zhang, S. Q. Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries. Nano Energy 2015, 12, 224–230.

    Article  Google Scholar 

  75. Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013, 7, 11004–11015.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the financial support from National Natural Science Foundation of China (Nos. 21471039, 21571043, and 21671047), Fundamental Research Funds for the Central Universities (PIRS of HIT A201502 and HIT. BRETIII. 201223), China Postdoctoral Science Foundation (No. 2014M560253), Postdoctoral Scientific Research Fund of Heilongjiang Province (Nos. LBH-Q14062 and LBH-Z14076), Natural Science Foundation of Heilongjiang Province (No. B2015001), and Youth Innovation Promotion Association of CAS (No. 2015316).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xijiang Han, Wei Zhang or Ping Xu.

Electronic supplementary material

12274_2017_1882_MOESM1_ESM.pdf

Conjugated polymer-mediated synthesis of sulfur- and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Han, X., Du, Y. et al. Conjugated polymer-mediated synthesis of sulfur- and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. Nano Res. 11, 2573–2585 (2018). https://doi.org/10.1007/s12274-017-1882-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1882-y

Keywords

Navigation