Skip to main content
Log in

Enhanced sodium storage performance in flexible free-standing multichannel carbon nanofibers with enlarged interlayer spacing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A flexible and free-standing multichannel carbon nanofiber (MCNF) film electrode was fabricated through electrospinning and carbonization. After high-temperature treatment of MCNFs in vacuum, the obtained fibers (MCNFs-V) had a dilated interlayer spacing of graphene sheets (0.398 nm) and an ultra-low specific surface area (15.3 m2/g). When used as an anode for sodium-ion batteries, the MCNFs-V showed a discharge plateau below 0.1 V, and sodium was intercalated into the stacked graphene sheets layers during the sodiation process. The MCNFs-V exhibited a reversible and high specific capacity of 222 mAh/g at a current density of 0.1 A/g after 100 cycles and excellent long-term cycling stability, which was superior to that of MCNFs. The improved sodium storage performance was attributed to the unique microstructure of the MCNFs-V with an enlarged interlayer spacing of graphene sheets for sodium intercalation. The MCNFs-V electrode holds great promise as an anode material for commercial sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  2. Tarascon, J.-M. Is lithium the new gold? Nat. Chem. 2010, 2, 510.

    Article  Google Scholar 

  3. Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

    Article  Google Scholar 

  4. Pan, H. L.; Hu, Y.-S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ.Sci. 2013, 6, 2338–2360.

    Article  Google Scholar 

  5. Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

    Article  Google Scholar 

  6. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

    Article  Google Scholar 

  7. Sathiya, M.; Hemalatha, K.; Ramesha, K.; Tarascon, J.-M.; Prakash, A. S. Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chem. Mater. 2012, 24, 1846–1853.

    Article  Google Scholar 

  8. Yoshida, H.; Yabuuchi, N.; Kubota, K.; Ikeuchi, I.; Garsuch, A.; Schulz-Dobrick, M.; Komaba, S. P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chem. Commun. 2014, 50, 3677–3680.

    Article  Google Scholar 

  9. Xu, S. Y.; Wu, X. Y.; Li, Y. M.; Hu, Y. S.; Chen, L. Q. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chin. Phys. B 2014, 23, 118202.

    Article  Google Scholar 

  10. Yu, H. J.; Guo, S. H.; Zhu, Y. B.; Ishida, M.; Zhou, H. S. Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries. Chem. Commun. 2014, 50, 457–459.

    Article  Google Scholar 

  11. Barpanda, P.; Oyama, G.; Nishimura, S.-I.; Chung, S.-C.; Yamada, A. A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 2014, 5, 4358.

    Article  Google Scholar 

  12. Li, Y. M.; Mu, L. Q.; Hu, Y.-S.; Li, H.; Chen, L. Q.; Huang, X. J. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater. 2016, 2, 139–145.

    Article  Google Scholar 

  13. Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.

    Article  Google Scholar 

  14. Liu, J.; Wen, Y. R.; van Aken, P. A.; Maier, J.; Yu, Y. Facile synthesis of highly porous Ni–Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett. 2014, 14, 6387–6392.

    Article  Google Scholar 

  15. Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 2012, 48, 3321–3323.

    Article  Google Scholar 

  16. Pan, H. L.; Lu, X.; Yu, X. Q.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv. Energy Mater. 2013, 3, 1186–1194.

    Article  Google Scholar 

  17. Kim, H.; Lim, E.; Jo, C.; Yoon, G.; Hwang, J.; Jeong, S.; Lee, J.; Kang, K. Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy 2015, 16, 62–70.

    Article  Google Scholar 

  18. Senguttuvan, P.; Rousse, G.; Vezin, H.; Tarascon, J.-M.; Palacín, M. R. Titanium(III) sulfate as new negative electrode for sodium-ion batteries. Chem. Mater. 2013, 25, 2391–2393.

    Article  Google Scholar 

  19. Wu, X. Y.; Ma, J.; Ma, Q. D.; Xu, S. Y.; Hu, Y.-S.; Sun, Y.; Li, H.; Chen, L. Q.; Huang, X. J. A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 13193–13197.

    Article  Google Scholar 

  20. Wu, X. Y.; Jin, S. F.; Zhang, Z. Z.; Jiang, L. W.; Mu, L. Q.; Hu, Y.-S.; Li, H.; Chen, X. L.; Armand, M.; Chen, L. Q. et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Sci. Adv. 2015, 1, e1500330.

    Article  Google Scholar 

  21. Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H. First-principles study of alkali metal-graphite intercalation compounds. J. Power Sourc. 2013, 243, 585–587.

    Article  Google Scholar 

  22. Ge, P.; Fouletier, M. Electrochemical intercalation of sodium in graphite. Solid State Ionics 1988, 28–30, 1172–1175.

    Article  Google Scholar 

  23. Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.

    Article  Google Scholar 

  24. Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

    Article  Google Scholar 

  25. Fu, L. J.; Tang, K.; Song, K. P.; van Aken, P. A.; Yu, Y.; Maier, J. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 2014, 6, 1384–1389.

    Article  Google Scholar 

  26. Luo, W.; Schardt, J.; Bommier, C.; Wang, B.; Razink, J.; Simonsen, J.; Ji, X. L. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J. Mater. Chem. A 2013, 1, 10662–10666.

    Article  Google Scholar 

  27. Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M.-M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

    Article  Google Scholar 

  28. Zeng, L. C.; Li, W. H.; Cheng, J. X.; Wang, J. Q.; Liu, X. W.; Yu, Y. N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties. RSC Adv. 2014, 4, 16920–16927.

    Article  Google Scholar 

  29. Bommier, C.; Leonard, D.; Jian, Z. L.; Stickle, W. F.; Greaney, P. A.; Ji, X. L. New paradigms on the nature of solid electrolyte interphase formation and capacity fading of hard carbon anodes in Na-ion batteries. Adv. Mater. Interfaces 2016, 3, 1600449.

    Article  Google Scholar 

  30. Simone, V.; Boulineau, A.; de Geyer, A.; Rouchon, D.; Simonin, L.; Martinet, S. Hard carbon derived from cellulose as anode for sodium ion batteries: Dependence of electrochemical properties on structure. J. Energy Chem. 2016, 25, 761–768.

    Article  Google Scholar 

  31. Sun, N.; Liu, H.; Xu, B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 20560–20566.

    Article  Google Scholar 

  32. Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.

    Google Scholar 

  33. Qie, L.; Chen, W. M.; Xiong, X. Q.; Hu, C. C.; Zou, F.; Hu, P.; Huang, Y. H. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodiumion batteries. Adv. Sci. 2015, 2, 1500195.

    Article  Google Scholar 

  34. Gwon, H.; Kim, H.-S.; Lee, K. U.; Seo, D.-H.; Park, Y. C.; Lee, Y.-S.; Ahn, B. T.; Kang, K. Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 2011, 4, 1277–1283.

    Article  Google Scholar 

  35. Wang, H.-G.; Wu, Z.; Meng, F.-L.; Ma, D.-L.; Huang, X.-L.; Wang, L.-M.; Zhang, X.-B. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 2013, 6, 56–60.

    Article  Google Scholar 

  36. Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nature Commun. 2015, 6, 8850.

    Article  Google Scholar 

  37. Elizabeth, I.; Singh, B. P.; Trikha, S.; Gopukumar, S. Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries. J. Power Sourc. 2016, 329, 412–421.

    Article  Google Scholar 

  38. Qiu, Y.-H.; Wang, T.-H.; Song, C.-W.; Qu, X.-C. The influence of pyrolysis atmosphere on the microstructure of a carbon membrane produced from polyacrylonitrile. New Carbon Mater. 2006, 2, 161–166.

    Google Scholar 

  39. Wang, Y.; Huang, W.; Wei, F.; Luo, G. H.; Yu, H.; Aihemai, T. J. High temperature treatment and characterization of carbon nanotubes. Chem. J. Chin. Univ. 2002, 24, 953–957.

    Google Scholar 

  40. Mochida, I.; Ku, C.-H.; Korai, Y. Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches. Carbon 2001, 39, 399–410.

    Article  Google Scholar 

  41. Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton, M.; Mitlin, D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014, 8, 7115–7129.

    Article  Google Scholar 

  42. Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. L. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett 2015, 15, 5888–5892.

    Article  Google Scholar 

  43. Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.

    Article  Google Scholar 

  44. Cao, Y. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X. Surfacemodified graphite as an improved intercalating anode for lithium-ion batteries. Electrochem. Solid-State Lett. 2003, 6, A30–A33.

    Article  Google Scholar 

  45. Wang, L. S.; Huang, Y. D.; Jia, D. Z. Triethyl orthoformate as a new film-forming electrolytes solvent for lithium-ion batteries with graphite anodes. Electrochim. Acta 2006, 51, 4950–4955.

    Article  Google Scholar 

  46. Thomas, P.; Billaud, D. Electrochemical insertion of sodium into hard carbons. Electrochim. Acta 2002, 47, 3303–3307.

    Article  Google Scholar 

  47. Stevens, D. A.; Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803–A811.

    Article  Google Scholar 

  48. Li, Y. M.; Hu, Y.-S.; Titirici, M.-M.; Chen, L. Q.; Huang, X. J. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600659.

    Article  Google Scholar 

  49. Liu, P.; Li, Y. M.; Hu, Y.-S.; Li, H.; Chen, L. Q.; Huang, X. J. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 13046–13052.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21373195, 51674228, and 51622210), the National Key Research and Development Program of China (No. 2016YFB0100305), the Fundamental Research Funds for the Central Universities (Nos. WK3430000004 and WK2320000034), the Collaborative Innovation Center of Suzhou Nano Science and Technology. Q. S. W. is supported by Youth Innovation Promotion Association CAS (No. 2013286).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Yu or Qingsong Wang.

Electronic supplementary material

12274_2017_1847_MOESM1_ESM.pdf

Enhanced sodium storage performance in flexible free-standing multichannel carbon nanofibers with enlarged interlayer spacing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Zeng, L., Sun, X. et al. Enhanced sodium storage performance in flexible free-standing multichannel carbon nanofibers with enlarged interlayer spacing. Nano Res. 11, 2256–2264 (2018). https://doi.org/10.1007/s12274-017-1847-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1847-1

Keywords

Navigation