Nano Research

, Volume 11, Issue 1, pp 586–602 | Cite as

Cross-linked self-assembling peptide scaffolds

  • Raffaele Pugliese
  • Amanda Marchini
  • Gloria Anna Ada Saracino
  • Ronald N. Zuckermann
  • Fabrizio Gelain
Research Article

Abstract

Self-assembling peptides (SAPs) are synthetic bioinspired biomaterials that can be feasibly multi-functionalized for cell transplantation and/or drug delivery therapies. Despite their superior biocompatibility and ease of scaling-up for production, they are unfortunately hampered by weak mechanical properties due to transient non-covalent interactions among and within the self-assembled peptide chains, thus limiting their potential applications as fillers, hemostat solutions, and fragile scaffolds for soft tissues. Here, we have developed and characterized a cross-linking strategy that increases both the stiffness and the tailorability of SAP hydrogels, enabling the preparation of transparent flexible threads, discs, channels, and hemispherical constructs. Empirical and computational results, in close agreement with each other, confirmed that the cross-linking reaction does not affect the previously self-assembled secondary structures. In vitro tests also provided a first hint of satisfactory biocompatibility by favoring viability and differentiation of human neural stem cells. This work could bring self-assembling peptide technology to many applications that have been precluded so far, especially in regenerative medicine.

Keywords

self-assembling peptide co-assembling peptide cross-linking sulfo-SMCC supramolecular self-assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Work described and performed by R. P., G. S., and F. G. was funded by Fondazione Cariplo under Grant no. 2011-0352, by La Colonna Onlus, by the “Ricerca Corrente 2015–2016” funding granted by the Italian Ministry of Health and by the “5 × 1000” voluntary contributions. A. M. is supported by a fellowship granted by Vertical Onlus. Raman, XRD, FTIR and WAXS experiments were conducted at the Advanced Light Source and at the Molecular Foundry, at the Lawrence Berkeley National Laboratory, both of which are supported by the Office of Science, under Contract No. DE-AC02-05CH11231. We thank Alice Nodari for her help in SAP production and QC tests.

Supplementary material

12274_2017_1834_MOESM1_ESM.pdf (2 mb)
Cross-linked self-assembling peptide scaffolds.
12274_2017_1834_MOESM2_ESM.mp4 (1.8 mb)
Supplementary material, approximately 1.77 MB.
12274_2017_1834_MOESM3_ESM.mp4 (1.1 mb)
Supplementary material, approximately 1.10 MB.

References

  1. [1]
    Matson, J. B.; Stupp, S. I. Self-assembling peptide scaffolds for regenerative medicine. Chem. Commun. 2012, 48, 26–33.CrossRefGoogle Scholar
  2. [2]
    Saracino, G. A. A.; Cigognini, D.; Silva, D.; Caprini, A.; Gelain, F. Nanomaterials design and tests for neural tissue engineering. Chem. Soc. Rev. 2013, 42, 225–262.CrossRefGoogle Scholar
  3. [3]
    Morgan, C. E.; Dombrowski, A. W.; Rubert Pérez, C. M.; Bahnson, E. S. M.; Tsihlis, N. D.; Jiang, W. L.; Jiang, Q.; Vercammen, J. M.; Prakash, V. S.; Pritts, T. A. et al. Tissue-factor targeted peptide amphiphile nanofibers as an injectable therapy to control hemorrhage. ACS Nano 2016, 10, 899–909.CrossRefGoogle Scholar
  4. [4]
    Ozeki, M.; Kuroda, S.; Kon, K.; Kasugai, S. Differentiation of bone marrow stromal cells into osteoblasts in a self-assembling peptide hydrogel: In vitro and in vivo studies. J. Biomater. Appl. 2011, 25, 663–684.CrossRefGoogle Scholar
  5. [5]
    Schneider, A.; Garlick, J. A.; Egles, C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One 2008, 3, e1410.CrossRefGoogle Scholar
  6. [6]
    Loo, Y.; Wong, Y. C.; Cai, E. Z.; Ang, C. H.; Raju, A.; Lakshmanan, A.; Koh, A. G.; Zhou, H. J.; Lim, T. C.; Moochhala, S. M. et al. Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials 2014, 35, 4805–4814.CrossRefGoogle Scholar
  7. [7]
    Tysseling-Mattiace, V. M.; Sahni, V.; Niece, K. L.; Birch, D.; Czeisler, C.; Fehlings, M. G.; Stupp, S. I.; Kessler, J. A. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci. 2008, 28, 3814–3823.CrossRefGoogle Scholar
  8. [8]
    Yan, C. Q.; Pochan, D. J. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem. Soc. Rev. 2010, 39, 3528–3540.CrossRefGoogle Scholar
  9. [9]
    Davis, M. E.; Michael Motion, J. P.; Narmoneva, D. A.; Takahashi, T.; Hakuno, D.; Kamm, R. D.; Zhang, S.; Lee, R. T. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 2005, 111, 442–450.CrossRefGoogle Scholar
  10. [10]
    Cigognini, D.; Silva, D.; Paloppi, S.; Gelain, F. Evaluation of mechanical properties and therapeutic effect of injectable self-assembling hydrogels for spinal cord injury. J. Biomed. Nanotechnol. 2014, 10, 309–323.CrossRefGoogle Scholar
  11. [11]
    Tao, H.; Wu, Y. H.; Li, H. F.; Wang, C. F.; Zhang, Y.; Li, C.; Wen, T. Y.; Wang, X. M.; He, Q.; Wang, D. L. et al. BMP7-based functionalized self-assembling peptides for nucleus pulposus tissue engineering. ACS Appl. Mater. Interfaces 2015, 7, 17076–17087.CrossRefGoogle Scholar
  12. [12]
    Tatman, P. D.; Gerull, W.; Sweeney-Easter, S.; Davis, J. I.; Gee, A. O.; Kim, D. H. Multiscale biofabrication of articular cartilage: Bioinspired and biomimetic approaches. Tissue Eng. B Rev. 2015, 21, 543–559.CrossRefGoogle Scholar
  13. [13]
    Brunton, P. A.; Davies, R. P.; Burke, J. L.; Smith, A.; Aggeli, A.; Brookes, S. J.; Kirkham, J. Treatment of early caries lesions using biomimetic self-assembling peptides—A clinical safety trial. Br. Dent. J. 2013, 215, E6.CrossRefGoogle Scholar
  14. [14]
    Sang, L. Y. H.; Liang, Y. X.; Li, Y.; Wong, W. M.; Tay, D. K. C.; So, K. F.; Ellis-Behnke, R. G.; Wu, W. T.; Cheung, R. T. F. A self-assembling nanomaterial reduces acute brain injury and enhances functional recovery in a rat model of intracerebral hemorrhage. Nanomed.: Nanotechnol. Biol. Med. 2015, 11, 611–620.CrossRefGoogle Scholar
  15. [15]
    Guo, J. S.; Leung, K. K.; Su, H. X.; Yuan, Q. J.; Wang, L.; Chu, T. H.; Zhang, W. M.; Pu, J. K. S.; Ng, G. K. P.; Wong, W. M. et al. Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomed.: Nanotechnol. Biol. Med. 2009, 5, 345–351.CrossRefGoogle Scholar
  16. [16]
    Cigognini, D.; Satta, A.; Colleoni, B.; Silva, D.; Donegà, M.; Antonini, S.; Gelain, F. Evaluation of early and late effects into the acute spinal cord injury of an injectable functionalized self-assembling scaffold. PLoS One 2011, 6, e19782.CrossRefGoogle Scholar
  17. [17]
    Gelain, F.; Panseri, S.; Antonini, S.; Cunha, C.; Donega, M.; Lowery, J.; Taraballi, F.; Cerri, G.; Montagna, M.; Baldissera, F. et al. Transplantation of nanostructured composite scaffolds results in the regeneration of chronically injured spinal cords. ACS Nano 2011, 5, 227–236.CrossRefGoogle Scholar
  18. [18]
    Yang, H. N.; Yang, H. L.; Xie, Z. H.; Wang, P.; Bi, J. Z. Self-assembling nanofibers alter the processing of amyloid precursor protein in a transgenic mouse model of Alzheimer’s disease. Neurol. Res. 2015, 37, 84–91.CrossRefGoogle Scholar
  19. [19]
    Xiong, N.; Dong, X. Y.; Zheng, J.; Liu, F. F.; Sun, Y. Design of lvffark and lvffark-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity. ACS Appl. Mater. Interfaces 2015, 7, 5650–5662.CrossRefGoogle Scholar
  20. [20]
    Caprini, A.; Silva, D.; Zanoni, I.; Cunha, C.; Volontè, C.; Vescovi, A.; Gelain, F. A novel bioactive peptide: Assessing its activity over murine neural stem cells and its potential for neural tissue engineering. N. Biotechnol. 2013, 30, 552–562.CrossRefGoogle Scholar
  21. [21]
    Gelain, F.; Unsworth, L. D.; Zhang, S. G. Slow and sustained release of active cytokines from self-assembling peptide scaffolds. J. Control. Rel. 2010, 145, 231–239.CrossRefGoogle Scholar
  22. [22]
    Pugliese, R.; Gelain, F. Peptidic biomaterials: From self-assembling to regenerative medicine. Trends Biotechnol. 2016, 35, 145–158.CrossRefGoogle Scholar
  23. [23]
    Kasoju, N.; Bora, U. Silk fibroin in tissue engineering. Adv. Healthcare Mater. 2012, 1, 393–412.CrossRefGoogle Scholar
  24. [24]
    Ibusuki, S.; Halbesma, G. J.; Randolph, M. A.; Redmond, R. W.; Kochevar, I. E.; Gill, T. J. Photochemically cross-linked collagen gels as three-dimensional scaffolds for tissue engineering. Tissue Eng. 2007, 13, 1995–2001.CrossRefGoogle Scholar
  25. [25]
    Ma, L.; Gao, C. Y.; Mao, Z. W.; Zhou, J.; Shen, J. C.; Hu, X. Q.; Han, C. M. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003, 24, 4833–4841.CrossRefGoogle Scholar
  26. [26]
    Olofsson, C.; Ahl, T.; Johansson, T.; Larsson, S.; Nellgård, P.; Ponzer, S.; Fagrell, B.; Przybelski, R.; Keipert, P.; Winslow, N. et al. A multicenter clinical study of the safety and activity of maleimide-polyethylene glycol-modified hemoglobin (hemospan®) in patients undergoing major orthopedic surgery. Anesthesiology 2006, 105, 1153–1163.CrossRefGoogle Scholar
  27. [27]
    Gilewski, T.; Ragupathi, G.; Bhuta, S.; Williams, L. J.; Musselli, C.; Zhang, X. F.; Bornmann, W. G.; Spassova, M.; Bencsath, K. P.; Panageas, K. S. et al. Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: A phase I trial. Proc. Natl. Acad. Sci. USA 2001, 98, 3270–3275.CrossRefGoogle Scholar
  28. [28]
    Björkholm, M.; Fagrell, B.; Przybelski, R.; Winslow, N.; Young, M.; Winslow, R. M. A phase I single blind clinical trial of a new oxygen transport agent (MP4), human hemoglobin modified with maleimide-activated polyethylene glycol. Haematologica 2005, 90, 505–515.Google Scholar
  29. [29]
    Riddles, P. W.; Blakeley, R. L.; Zerner, B. Reassessment of Ellman’s reagent. Methods Enzymol. 1983, 91, 49–60.CrossRefGoogle Scholar
  30. [30]
    Riddles, P. W.; Blakeley, R. L.; Zerner, B. Ellman’s reagent: 5,5′-dithiobis(2-nitrobenzoic acid)—a reexamination. Anal. Biochem. 1979, 94, 75–81.CrossRefGoogle Scholar
  31. [31]
    Gelain, F.; Silva, D.; Caprini, A.; Taraballi, F.; Natalello, A.; Villa, O.; Nam, K. T.; Zuckermann, R. N.; Doglia, S. M.; Vescovi, A. Bmhp1-derived self-assembling peptides: Hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications. ACS Nano 2011, 5, 1845–1859.CrossRefGoogle Scholar
  32. [32]
    Hexemer, A.; Bras, W.; Glossinger, J.; Schaible, E.; Gann, E.; Kirian, R.; MacDowell, A.; Church, M.; Rude, B.; Padmore, H. A SAXS/WAXS/GISAXS beamline with multilayer monochromator. J. Phys.: Conf. Ser. 2010, 247, 012007.Google Scholar
  33. [33]
    Taraballi, F.; Campione, M.; Sassella, A.; Vescovi, A.; Paleari, A.; Hwang, W.; Gelain, F. Effect of functionalization on the self-assembling propensity of β-sheet forming peptides. Soft Matter 2009, 5, 660–668.CrossRefGoogle Scholar
  34. [34]
    Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries, A. H. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B 2007, 111, 7812–7824.CrossRefGoogle Scholar
  35. [35]
    Monticelli, L.; Kandasamy, S. K.; Periole, X.; Larson, R. G.; Tieleman, D. P.; Marrink, S. J. The martini coarse-grained force field: Extension to proteins. J. Chem. Theory Comput. 2008, 4, 819–834.CrossRefGoogle Scholar
  36. [36]
    Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. Gromacs: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718.CrossRefGoogle Scholar
  37. [37]
    Mazzini, L.; Gelati, M.; Profico, D. C.; Sgaravizzi, G.; Projetti Pensi, M.; Muzi, G.; Ricciolini, C.; Rota Nodari, L.; Carletti, S.; Giorgi, C. et al. Human neural stem cell transplantation in als: Initial results from a phase i trial. J. Transl. Med. 2015, 13, 17.CrossRefGoogle Scholar
  38. [38]
    Raspa, A.; Saracino, G. A. A.; Pugliese, R.; Silva, D.; Cigognini, D.; Vescovi, A.; Gelain, F. Complementary co-assembling peptides: From in silico studies to in vivo application. Adv. Funct. Mater. 2014, 24, 6317–6328.CrossRefGoogle Scholar
  39. [39]
    Zhang, S. G. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171–1178.CrossRefGoogle Scholar
  40. [40]
    Haines-Butterick, L.; Rajagopal, K.; Branco, M.; Salick, D.; Rughani, R.; Pilarz, M.; Lamm, M. S.; Pochan, D. J.; Schneider, J. P. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl. Acad. Sci. USA 2007, 104, 7791–7796.CrossRefGoogle Scholar
  41. [41]
    Ding, Y.; Li, Y.; Qin, M.; Cao, Y.; Wang, W. Photo-crosslinking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability. Langmuir 2013, 29, 13299–13306.CrossRefGoogle Scholar
  42. [42]
    Khalily, M. A.; Goktas, M.; Guler, M. O. Tuning viscoelastic properties of supramolecular peptide gels via dynamic covalent crosslinking. Org. Biomol. Chem. 2015, 13, 1983–1987.CrossRefGoogle Scholar
  43. [43]
    Riener, C. K.; Kada, G.; Gruber, H. J. Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-dithiodipyridine. Anal. Bioanal. Chem. 2002, 373, 266–276.CrossRefGoogle Scholar
  44. [44]
    Maiti, N. C.; Apetri, M. M.; Zagorski, M. G.; Carey, P. R.; Anderson, V. E. Raman spectroscopic characterization of secondary structure in natively unfolded proteins: α-synuclein. J. Am. Chem. Soc. 2004, 126, 2399–2408.CrossRefGoogle Scholar
  45. [45]
    Jain, R.; Agarwal, A.; Kierski, P. R.; Schurr, M. J.; Murphy, C. J.; McAnulty, J. F.; Abbott, N. L. The use of native chemical functional groups presented by wound beds for the covalent attachment of polymeric microcarriers of bioactive factors. Biomaterials 2013, 34, 340–352.CrossRefGoogle Scholar
  46. [46]
    Schagger, H. Tricine-SDS-PAGE. Nat. Protoc. 2006, 1, 16–22.CrossRefGoogle Scholar
  47. [47]
    Chirgadze, Y. N.; Nevskaya, N. A. Infrared spectra and resonance interaction of amide-i vibration of the antiparallel-chain pleated sheet. Biopolymers 1976, 15, 607–625.CrossRefGoogle Scholar
  48. [48]
    Sarroukh, R.; Goormaghtigh, E.; Ruysschaert, J. M.; Raussens, V. ATR-FTIR: A “rejuvenated” tool to investigate amyloid proteins. Biochim. Biophys. Acta 2013, 1828, 2328–2338.CrossRefGoogle Scholar
  49. [49]
    Hwang, W.; Zhang, S.; Kamm, R. D.; Karplus, M. Kinetic control of dimer structure formation in amyloid fibrillogenesis. Proc. Natl. Acad. Sci. USA 2004, 101, 12916–12921.CrossRefGoogle Scholar
  50. [50]
    Saracino, G. A. A.; Gelain, F. Modelling and analysis of early aggregation events of bmhp1-derived self-assembling peptides. J. Biomol. Struct. Dyn. 2014, 32, 759–775.CrossRefGoogle Scholar
  51. [51]
    Sunde, M.; Serpell, L. C.; Bartlam, M.; Fraser, P. E.; Pepys, M. B.; Blake, C. C. F. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 1997, 273, 729–739.CrossRefGoogle Scholar
  52. [52]
    Yokoi, H.; Kinoshita, T.; Zhang, S. Dynamic reassembly of peptide rada16 nanofiber scaffold. Proc. Natl. Acad. Sci. USA 2005, 102, 8414–8419.CrossRefGoogle Scholar
  53. [53]
    Haynie, D. T. Physics of polypeptide multilayer films. J. Biomed. Mater. Res. B: Appl. Biomater. 2006, 78B, 243–252.CrossRefGoogle Scholar
  54. [54]
    Mermut, O.; Phillips, D. C.; York, R. L.; McCrea, K. R.; Ward, R. S.; Somorjai, G. A. In situ adsorption studies of a 14-amino acid leucine-lysine peptide onto hydrophobic polystyrene and hydrophilic silica surfaces using quartz crystal microbalance, atomic force microscopy, and sum frequency generation vibrational spectroscopy. J. Am. Chem. Soc. 2006, 128, 3598–3607.CrossRefGoogle Scholar
  55. [55]
    Hermanson, G. T. Bioconjugate Techniques; 3rd ed. Elsevier: Amsterdam, 2013.Google Scholar
  56. [56]
    Demir, B.; Walsh, T. R. A robust and reproducible procedure for cross-linking thermoset polymers using molecular simulation. Soft Matter 2016, 12, 2453–2464.CrossRefGoogle Scholar
  57. [57]
    Buehler, M. J. Nanomechanics of collagen fibrils under varying cross-link densities: Atomistic and continuum studies. J. Mech. Behav. Biomed. Mater. 2008, 1, 59–67.CrossRefGoogle Scholar
  58. [58]
    Zhang, S. T.; Fox, D. M.; Urbanc, B. Insights into formation and structure of aβ oligomers cross-linked via tyrosines. J. Phys. Chem. B 2017, 121, 5523–5535.CrossRefGoogle Scholar
  59. [59]
    Gelain, F.; Bottai, D.; Vescovi, A.; Zhang, S. G. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 2006, 1, e119.CrossRefGoogle Scholar
  60. [60]
    Lee, J. H.; Jung, H. W.; Kang, I. K.; Lee, H. B. Cell behaviour on polymer surfaces with different functional groups. Biomaterials 1994, 15, 705–711.CrossRefGoogle Scholar
  61. [61]
    Cai, L.; Lu, J.; Sheen, V.; Wang, S. F. Optimal poly(L-lysine) grafting density in hydrogels for promoting neural progenitor cell functions. Biomacromolecules 2012, 13, 1663–1674.CrossRefGoogle Scholar
  62. [62]
    Tayi, A. S.; Pashuck, E. T.; Newcomb, C. J.; McClendon, M. T.; Stupp, S. I. Electrospinning bioactive supramolecular polymers from water. Biomacromolecules 2014, 15, 1323–1327.CrossRefGoogle Scholar
  63. [63]
    Singh, G.; Bittner, A. M.; Loscher, S.; Malinowski, N.; Kern, K. Electrospinning of diphenylalanine nanotubes. Adv. Mater. 2008, 20, 2332–2336.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Raffaele Pugliese
    • 1
  • Amanda Marchini
    • 1
    • 2
  • Gloria Anna Ada Saracino
    • 2
  • Ronald N. Zuckermann
    • 3
  • Fabrizio Gelain
    • 1
    • 2
  1. 1.IRCCS Casa Sollievo della SofferenzaOpera di San Pio da PietralcinaFoggiaItaly
  2. 2.Center for Nanomedicine and Tissue Engineering (CNTE)A. O. Ospedale Niguarda Cà GrandaMilanItaly
  3. 3.The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations