Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates


Flexible memristor devices based on plastic substrates have attracted considerable attention due to their applications in wearable computers and integrated circuits. However, most plastic-substrate memristors cannot function or be grown in high-temperature environments. In this study, scotch-tape-exfoliated mica was used as the flexible memristor substrate in order to resolve these high-temperature issues. Our TiN/ZHO/IGZO memristor, which was constructed using a thin (10 μm) mica substrate, has superior flexibility and thermostability. After bending it 103 times, the device continues to exhibit exceptional electrical characteristics. It can also be implemented for transitions between high and low resistance states, even in temperatures of up to 300 °C. More importantly, the biological synaptic characteristics of paired-pulse facilitation/depression (PPF/PPD) and spike-timing-dependent plasticity (STDP) were observed through applying different pulse measurement modes. This work demonstrates that flexible memristor devices on mica substrates may potentially allow for the realization of high-temperature memristor applications for biologically-inspired computing systems.

This is a preview of subscription content, log in to check access.


  1. [1]

    Khan, Y.; Ostfeld, A. E.; Lochner, C. M.; Pierre, A.; Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–395.

    Article  Google Scholar 

  2. [2]

    Chen, G.; Xie, X. M.; Shen, G. Z. Flexible organic-inorganic hybrid photodetectors with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires. Nano Res. 2014, 7, 1777–1787.

    Article  Google Scholar 

  3. [3]

    Lim, H.; Cho, W. J.; Ha, C. S.; Ando, S.; Kim, Y. K.; Park, C. H.; Lee, K. Flexible organic electroluminescent devices based on fluorine-containing colorless polyimide Substrates. Adv. Mater. 2002, 14, 1275–1279.

    Article  Google Scholar 

  4. [4]

    Watanabe, K.; Iwaki, Y.; Uchida, Y.; Nakamura, D.; Ikeda, H.; Katayama, M.; Cho, T.; Miyake, H.; Yamazaki, S. A foldable OLED display with an in-cell touch sensor having embedded metal-mesh electrodes. J. Soc. Inform. Display 2016, 24, 12–20.

    Article  Google Scholar 

  5. [5]

    Liang, L.; Li, K.; Xiao, C.; Fan, S. J.; Liu, J.; Zhang, W. S.; Xu, W. H.; Tong, W.; Liao, J. Y.; Zhou, Y. Y. et al. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. J. Am. Chem. Soc. 2015, 137, 3102–3108.

    Article  Google Scholar 

  6. [6]

    Chou, H. H.; Nguyen, A.; Chortos, A.; To, J. W. F.; Lu, C.; Mei, J. G.; Kurosawa, T.; Bae W. G.; ToK, J. B. H.; Bao, Z. A. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 2015, 6, 8011.

    Article  Google Scholar 

  7. [7]

    Cai, Y. M.; Tan, J.; Liu, Y. F.; Lin, M.; Huang, R. A flexible organic resistance memory device for wearable biomedical applications. Nanotechnology 2016, 27, 275206.

    Article  Google Scholar 

  8. [8]

    Ji, Y.; Cho, B.; Song, S.; Kim, T. W.; Choe, M.; Kahng, Y. H.; Lee, T. Stable switching characteristics of organic nonvolatile memory on a bent flexible substrate. Adv. Mater. 2010, 22, 3071–3075.

    Article  Google Scholar 

  9. [9]

    Kim, S.; Son, J. H.; Lee, S. H.; You, B. K.; Park, K. I.; Lee, H. K.; Byun, M.; Lee, K. J. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganicbased laser lift-off. Adv. Mater. 2014, 26, 7480–7487.

    Article  Google Scholar 

  10. [10]

    Gu, C.; Lee, J. S. Flexible hybrid organic–inorganic perovskite memory. ACS Nano 2016, 10, 5413–5418.

    Article  Google Scholar 

  11. [11]

    Zhang, P.; Xu, B. H.; Gao, C. X.; Chen, G. L.; Gao, M. Z. Facile synthesis of Co9Se8 quantum dots as charge traps for flexible organic resistive switching memory device. ACS Appl. Mater. Interfaces 2016, 8, 30336–30343.

    Article  Google Scholar 

  12. [12]

    Wang, Z. R.; Joshi, S.; Savel’ev, S. E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, P. J.; Li, Z. Y. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108.

    Article  Google Scholar 

  13. [13]

    Li, Y.; Xu, L.; Zhong, Y. P.; Zhou, Y. X.; Zhong, S. J.; Hu, Y. Z.; Chua, L. O.; Miao, X. S. Associative learning with temporal contiguity in a memristive circuit for large-scale neuromorphic networks. Adv. Electron. Mater. 2015, 1, 1500125.

    Article  Google Scholar 

  14. [14]

    Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.

    Article  Google Scholar 

  15. [15]

    Wang, Z. Q.; Xu, H. Y.; Li, X. H.; Yu, H.; Liu, Y. C.; Zhu, X. J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759–2765.

    Article  Google Scholar 

  16. [16]

    Yan, X. B.; Zhou, Z. Y.; Ding, B. F.; Zhao, J. H.; Zhang, Y. Y. Superior resistive switching memory and biological synapse properties based on a simple TiN/SiO2/p-Si tunneling junction structure. J. Mater. Chem. C. 2017, 5, 2259–2267.

    Article  Google Scholar 

  17. [17]

    Jiang, J.; Guo, J. J.; Wan, X.; Yang, Y.; Xie, H. P.; Niu, D. M.; Yang, J. L.; He, J.; Gao, Y. L.; Wan, Q. 2D MoS2 neuromorphic devices for brain-like computational systems. Small 2017, 13, 1700933.

    Article  Google Scholar 

  18. [18]

    Kim, S.; Jeong, H. Y.; Kim, S. K.; Choi, S. Y.; Lee, K. J. Flexible memristive memory array on plastic substrates. Nano Lett. 2011, 11, 5438–5442.

    Article  Google Scholar 

  19. [19]

    Wu, W. F.; Chiou, B. S. Deposition of indium tin oxide films on polycarbonate substrates by radio-frequency magnetron sputtering. Thin Solid Films 1997, 298, 221–227.

    Article  Google Scholar 

  20. [20]

    Yang, Z. W.; Han, S. H.; Yang, T. L.; Ye, L. N.; Ma, H. L.; Cheng, C. F. ITO films deposited on water-cooled flexible substrate by bias RF magnetron sputtering. Appl. Surf. Sci. 2000, 161, 279–285.

    Article  Google Scholar 

  21. [21]

    Werner, M. R.; Fahrner, W. R. Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans. Ind. Electron. 2011, 48, 249–257.

    Article  Google Scholar 

  22. [22]

    Cheng, L.; Fenter, P.; Nagy, K. L.; Schlegel, M. L.; Sturchio, N. C. Molecular-scale density oscillations in water adjacent to a mica surface. Phys. Rev. Lett. 2001, 87, 156103.

    Article  Google Scholar 

  23. [23]

    Schlegel, M. L.; Nagy, K. L.; Fenter, P.; Cheng, L.; Sturchio, N. C.; Jacobsen, S. D. Cation sorption on the muscovite (001) surface in chloride solutions using high-resolution X-ray reflectivity. Geochim. Cosmochim. Acta 2006, 70, 3549–3565.

    Article  Google Scholar 

  24. [24]

    Scales, P. J.; Grieser, F.; Healy, T. W. Electrokinetics of the muscovite mica-aqueous solution interface. Langmuir 1990, 6, 582–589.

    Article  Google Scholar 

  25. [25]

    Israelachvili, J. N.; Pashley, R. M. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 1983, 306, 249–250.

    Article  Google Scholar 

  26. [26]

    Kuwahara, Y. Comparison of the surface structure of the tetrahedral sheets of muscovite and phlogopite by AFM. Phys. Chem. Miner. 2001, 28, 1–8.

    Article  Google Scholar 

  27. [27]

    Hu, J.; Xiao, X. D.; Ogletree, D. F.; Salmeron, M. The structure of molecularly thin films of water on mica in humid environments. Surf. Sci. 1995, 344, 221–236.

    Article  Google Scholar 

  28. [28]

    Xu, L.; Lio, A.; Hu, J.; Ogletree, D. F.; Salmeron, M. Wetting and capillary phenomena of water on mica. J. Phys. Chem. B 1998,102, 540–548.

    Article  Google Scholar 

  29. [29]

    Miranda, P. B.; Xu, L.; Shen, Y. R.; Salmeron, M. Icelike water monolayer adsorbed on mica at room temperature. Phys. Rev. Lett. 1998, 81, 5876–5879.

    Article  Google Scholar 

  30. [30]

    Antognozzi, M.; Humphris, A. D. L.; Miles, M. J. Observation of molecular layering in a confined water film and study of the layers viscoelastic properties. Appl. Phys. Lett. 2001, 78, 300–302.

    Article  Google Scholar 

  31. [31]

    Obreimoff, J. W. The splitting strength of mica. Proc. Roy. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 1930, 127, 290–297.

    Article  Google Scholar 

  32. [32]

    Wang, Y. F.; Lin, Y. C.; Wang, I. T.; Lin, T. P.; Hou, T. H. Characterization and modeling of nonfilamentary Ta/TaOx/ TiO2/Ti analog synaptic device. Sci. Rep. 2015, 5, 10150.

    Article  Google Scholar 

  33. [33]

    Campbell, P. A.; Sinnamon, L. J.; Thompson, C. E.; Walmsley, D. G. Atomic force microscopy evidence for K+ domains on freshly cleaved mica. Surf. Sci. 1998, 410, L768–L772.

    Article  Google Scholar 

  34. [34]

    Kim, Y. S.; Maeda, N.; Kitada, H.; Fujimoto, K.; Kodama, S.; Kawai, A.; Arai, K.; Suzuki, K.; Nakamura, T.; Ohba, T. Advanced wafer thinning technology and feasibility test for 3D integration. Microelectron. Eng. 2013, 107, 65–71.

    Article  Google Scholar 

  35. [35]

    Poppa, H.; Elliot, A. G. The surface composition of mica substrates. Surf. Sci. 1971, 24, 149–163.

    Article  Google Scholar 

  36. [36]

    Lee, C.; Park, A.; Cho, Y.; Park, M.; Lee, W. I.; Kim, H. W. Influence of ZnO buffer layer thickness on the electrical and optical properties of indium zinc oxide thin films deposited on PET substrates. Ceram. Int. 2008, 34, 1093–1096.

    Article  Google Scholar 

  37. [37]

    Baek, Y. J.; Hu, Q. L.; Yoo, J. W.; Choi, Y. J.; Kang, C. J.; Lee, H. H.; Min, S. H.; Kim, H. M.; Kim, K. B.; Yoon, T. S. Tunable threshold resistive switching characteristics of Pt–Fe2O3 core–shell nanoparticle assembly by space charge effect. Nanoscale 2013, 5, 772–779.

    Article  Google Scholar 

  38. [38]

    Du, C.; Ma, W.; Chang, T.; Sheridan, P.; Lu, W. D. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater. 2015, 25, 4290–4299.

    Article  Google Scholar 

  39. [39]

    Li, Y.; Zhong, Y. P.; Zhang, J. J.; Xu, L.; Wang, Q.; Sun, H. J.; Tong, H.; Cheng, X.; M. Miao, X. S. Activitydependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci. Rep. 2014, 4, 4906.

    Article  Google Scholar 

  40. [40]

    Li, Y.; Zhong, Y. P.; Xu, L.; Zhang, J. J.; Xu, X. H.; Sun, H. J.; Miao, X. S. Ultrafast synaptic events in a chalcogenide memristor. Sci. Rep. 2013, 3, 1619.

    Article  Google Scholar 

  41. [41]

    Yang, Y. C.; Lee, J. H.; Lee, S.; Liu, C. H.; Zhong, Z. H.; Lu, W. Oxide resistive memory with functionalized graphene as built-in selector element. Adv. Mater. 2014, 26, 3693–3699.

    Article  Google Scholar 

  42. [42]

    Chang, S. H.; Lee, J. S.; Chae, S. C.; Lee, S. B.; Liu, C.; Kahng, B.; Kim, D. W.; Noh, T. W. Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 2009, 102, 026801.

    Article  Google Scholar 

  43. [43]

    Lee, M. J.; Kim, S. I.; Lee, C. B.; Yin, H. X.; Ahn, S. E.; Kang, B. S.; Kim, K. H.; Park, J. C.; Kim, C. J.; Song. I.; et al. Low-temperature-grown transition metal oxide based storage materials and oxide transistors for high-density nonvolatile memory. Adv. Funct. Mater. 2009, 19, 1587–1593.

    Article  Google Scholar 

  44. [44]

    Lee, M. J.; Han, S.; Jeon, S. H.; Park, B. H.; Kang, B. S.; Ahn, S. E.; Kim, K. H.; Lee, C. B.; Kim C. J.; Yoo, I. K. et al. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 2009, 9, 1476–1481.

    Article  Google Scholar 

  45. [45]

    Tseng, H. C.; Chang, T. C.; Huang, J. J.; Yang, P. C.; Chen, Y. T.; Jian, F. Y.; Sze, S. M.; Tsai, M. J. Investigating the improvement of resistive switching trends after post-forming negative bias stress treatment. Appl. Phys. Lett. 2011, 99, 132104.

    Article  Google Scholar 

  46. [46]

    Zhang, H. J.; Zhang, X. P.; Shi, J. P.; Tian, H. F.; Zhao, Y. G. Effect of oxygen content and superconductivity on the nonvolatile resistive switching in YBa2Cu3O6+x/Nb-doped SrTiO3 heterojunctions. Appl. Phys. Lett. 2009, 94, 092111.

    Article  Google Scholar 

  47. [47]

    Mott, N. F.; Davis, E. A. Electronic Processes in Non-Crystalline Materials; Oxford University Press: Oxford, 1979.

    Google Scholar 

  48. [48]

    Pollak, M. A percolation treatment of dc hopping conduction. J. Non-Cryst. Solids 1972, 11, 1–24.

    Article  Google Scholar 

  49. [49]

    Yang, Y. C.; Sheridan, P.; Lu, W. Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl. Phys. Lett. 2012, 100, 203112.

    Article  Google Scholar 

  50. [50]

    Mott, N. F. Conduction in non-crystalline materials: III. Localized states in a pseudogap and near extremities of conduction and valence bands. Philos. Mag. 1969, 19, 835–852.

    Google Scholar 

  51. [51]

    Zhu, X. J.; Du, C.; Jeong, Y.; Lu, W. D. Emulation of synaptic metaplasticity in memristors. Nanoscale 2017, 9, 45–51.

    Article  Google Scholar 

  52. [52]

    Chang, T.; Jo, S. H.; Kim, K. H.; Sheridan, P.; Gaba, S.; Lu, W. Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 2011, 102, 857–863.

    Article  Google Scholar 

  53. [53]

    Yang, R.; Terabe, K.; Liu, G. Q.; Tsuruoka, T.; Hasegawa, T.; Gimzewski, J. K.; Aono, M. On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration. ACS Nano 2012, 6, 9515–9521.

    Article  Google Scholar 

  54. [54]

    Yan, X. B.; Hao, H.; Chen, Y. F.; Li, Y. C.; Banerjee, W. Highly transparent bipolar resistive switching memory with In-Ga-Zn-O semiconducting electrode in In-Ga-Zn-O/ Ga2O3/In-Ga-Zn-O structure. Appl. Phys. Lett. 2014, 105, 093502.

    Article  Google Scholar 

  55. [55]

    Nian, Y. B.; Strozier, J.; Wu, N. J.; Chen, X.; Ignatiev, A. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 2007, 98, 146403.

    Article  Google Scholar 

  56. [56]

    Ren, S. X.; Zhang, L. Y.; Dong, J. Y.; Huang, Y. F.; Guo, J. J.; Zhang, L.; Zhao, J.; Zhao X.; Chen, W. Electric field control of magnetism in Ti/ZnO/Pt and Ti/ZnO/SRO devices. J. Mater. Chem. C 2015, 3, 4077–4080.

    Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (Nos. 61306098, 61674050 and 61422407), the Natural Science Foundation of Hebei Province (Nos. E2012201088 and E2013201176), the Science Research Program of University in Hebei Province (No. ZH2012019), Top-notch Youth Project of University in Hebei Province (No. BJ2014008), the project of enhancement comprehensive strength of the Midwest universities of Hebei University, the Outstanding Youth Project of Hebei Province (No. F2016201220), the outstanding Youth Cultivation Project of Hebei University (No. 2015JQY01), Project of science and technology activities for overseas researcher (No. CL201602), Post-graduate’s Innovation Fund Project of Hebei University (No. X201714), and Baoding Nanyang Research Institute - New Material Technology Platform (17H03).

Author information



Corresponding authors

Correspondence to Xiaobing Yan or Qi Liu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Zhou, Z., Zhao, J. et al. Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates. Nano Res. 11, 1183–1192 (2018). https://doi.org/10.1007/s12274-017-1781-2

Download citation


  • mica
  • flexible
  • memristor
  • synapse