Skip to main content
Log in

Silicene on non-metallic substrates: Recent theoretical and experimental advances

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 02 February 2018

This article has been updated

Abstract

Silicene, the silicon counterpart of graphene, has been successfully grown on metallic substrates such as Ag(111), ZrB2(0001), and Ir(111) surfaces. However, characterization of its electronic structure is hampered by the metallic substrate. In addition, potential applications of silicene in nanoelectronic devices will require its growth on or integration with semiconducting and insulating substrates. We herein present a review of recent theoretical works regarding the interaction of silicene with non-metallic templates, distinguishing between the weak van-der-Waals-like interactions of silicene with, for example, layered metal (di)chalcogenides, and the stronger covalent bonding between silicene and, for example, ZnS surfaces. We then present a methodology to effectively compare the stability of diverse silicene structures using thermodynamics and molecular dynamics density functional theory calculations. Recent experimental results on the growth of silicene on MoS2 are also reported and compared to the theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 02 February 2018

    The name of the second author in the original version of this article was unfortunately wrongly written on page 1169.

    Instead of

    Kostantina Iordanidou

    It should read

    Konstantina Iordanidou

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  CAS  Google Scholar 

  3. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

    Article  CAS  Google Scholar 

  4. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  CAS  Google Scholar 

  5. Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261–8283.

    Article  CAS  Google Scholar 

  6. Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike twodimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

    Article  Google Scholar 

  7. Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicone. New J. Phys. 2014, 16, 095002.

    Article  Google Scholar 

  8. Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M. C.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Continuous germanene layer on Al(111). Nano Lett. 2015, 15, 2510–2516.

    Article  CAS  Google Scholar 

  9. Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025.

    Article  CAS  Google Scholar 

  10. Takeda, K.; Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 1994, 50, 14916–14922.

    Article  CAS  Google Scholar 

  11. Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

    Article  CAS  Google Scholar 

  12. Ezawa, M. Valley-polarized metals and quantum anomalous hall effect in silicene. Phys. Rev. Lett. 2012, 109, 055502.

    Article  Google Scholar 

  13. Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 2012, 14, 033003.

    Article  Google Scholar 

  14. Scalise, E.; Houssa, M.; Pourtois, G.; van den Broek, B.; Afanas’ev, V.; Stesmans, A. Vibrational properties of silicene and germanene. Nano Res. 2013, 6, 19–28.

    Article  CAS  Google Scholar 

  15. Matthes, L.; Pulci, O.; Bechstedt, F. Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles. New J. Phys. 2014, 16, 105007.

    Article  Google Scholar 

  16. Houssa, M.; Dimoulas, A.; Molle, A. Silicene: A review of recent experimental and theoretical investigations. J. Phys.: Condens. Matter 2015, 27, 253002.

    CAS  Google Scholar 

  17. Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 2012, 12, 3507–3511.

    Article  CAS  Google Scholar 

  18. Chiappe, D.; Grazianetti, C.; Tallarida, G.; Fanciulli, M.; Molle, A. Local electronic properties of corrugated silicene phases. Adv. Mat. 2012, 24, 5088–5093.

    Article  CAS  Google Scholar 

  19. Enriquez, H.; Vizzini, S.; Kara, A.; Lalmi, B.; Oughaddou, H. Silicene structures on silver surfaces. J. Phys.: Condens. Matter 2012, 24, 314211.

    Google Scholar 

  20. Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Tsipas, P.; Dimoulas, A. Evidence for hybrid surface metallic band in (4×4) silicene on Ag(111). Appl. Phys. Lett. 2013, 103, 231604.

    Article  Google Scholar 

  21. Moras, P.; Mentes, T. O.; Sheverdyaeva, P. M.; Locatelli, A.; Carbone, C. Coexistence of multiple silicene phases in silicon grown on Ag(111). J. Phys.: Condens. Matter 2014, 26, 185001.

    CAS  Google Scholar 

  22. Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501.

    Article  Google Scholar 

  23. Lee, C. C.; Fleurence, A.; Yamada-Takamura, Y.; Ozaki, T.; Friedlein, R. Band structure of silicene on zirconium diboride (0001) thin-film surface: Convergence of experiment and calculations in the one-Si-atom Brillouin zone. Phys. Rev. B 2014, 90, 075422.

    Article  Google Scholar 

  24. Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685–690.

    Article  CAS  Google Scholar 

  25. Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231.

    Article  CAS  Google Scholar 

  26. Jose, D.; Datta, A. Structures and chemical properties of silicene: unlike graphene. Acc. Chem. Res. 2014, 47, 593–602.

    Article  CAS  Google Scholar 

  27. Balendhran, S.; Walia, S.; Nili, H.; Sriram, S.; Bhaskaran, M. Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene. Small 2015, 11, 640–652.

    Article  CAS  Google Scholar 

  28. Lew Yan Voon, L. C.; Zhu, J. J.; Schwingenschlögl, U. Silicene: Recent theoretical advances. Appl. Phys. Rev. 2016, 3, 040802.

    Article  Google Scholar 

  29. Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S. C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163–169.

    Article  CAS  Google Scholar 

  30. Houssa, M.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. Can silicon behave like graphene? A first-principles study. Appl. Phys. Lett. 2010, 97, 112106.

    Article  Google Scholar 

  31. Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A. Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S, Se, Te) chalchogenide templates. 2D Mater. 2014, 1, 011010.

    Article  Google Scholar 

  32. Li, L. Y.; Zhao, M. W. Structures, energetics, and electronic properties of multifarious stacking patterns for high-buckled and low-buckled silicene on the MoS2 substrate. J. Phys. Chem. C 2014, 118, 19129–19138.

    Article  CAS  Google Scholar 

  33. Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. Phys. Chem. Chem. Phys. 2013, 15, 3702–3705.

    Article  CAS  Google Scholar 

  34. Molle, A.; Lamperti, A.; Rotta, D.; Fianciulli, M.; Cinquanta, E.; Grazianetti, C. Electron confinement at the Si/MoS2 heterosheet interface. Adv. Mater. Interfaces 2016, 3, 1500619.

    Article  Google Scholar 

  35. Scalise, E.; Houssa, M. Predicting 2D silicon allotropes on SnS2. Nano Res. 2017, 10, 1697–1079.

    Article  CAS  Google Scholar 

  36. Houssa, M.; Pourtois, G.; Heyns, M. M.; Afanas’ev, V. V.; Stesmans, A. Electronic properties of silicene: Insights from first-principles modeling. J. Electrochem. Soc. 2011, 158, H107–H110.

    Article  CAS  Google Scholar 

  37. Ding, Y.; Wang, Y. L. Electronic structures of silicene/GaS heterosheets. Appl. Phys. Lett. 2013, 103, 043114.

    Article  Google Scholar 

  38. Zhu, J. J.; Schwingenschlögl, U. Stability and electronic properties of silicene on WSe2. J. Mater. Chem. C 2015, 3, 3946–3953.

    Article  CAS  Google Scholar 

  39. Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Twodimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 2014, 26, 2096–2101.

    Article  CAS  Google Scholar 

  40. Zhu, J. J.; Schwingenschlögl, U. Structural and electronic properties of silicene on MgX2 (X = Cl, Br, and I). ACS Appl. Mat. Interfaces 2014, 6, 11675–11681.

    Article  CAS  Google Scholar 

  41. Li, L. Y.; Wang, X. P.; Zhao, X. Y..; Zhao, M. W. Moiré superstructures of silicene on hexagonal boron nitride: A first-principles study. Phys. Lett. A 2013, 377, 2628–2632.

    Article  CAS  Google Scholar 

  42. Kokott, S.; Pflugradt, P.; Matthes, L.; Bechstedt, F. Nonmetallic substrates for growth of silicene: An ab initio prediction. J. Phys.: Condens. Matter 2014, 26, 185002.

    CAS  Google Scholar 

  43. Badylevich, M.; Shamuilia, S.; Afanas’ev, V. V.; Stesmans, A.; Fedorenko, Y. G.; Zhao, C. Electronic structure of the interface of aluminum nitride with Si(100). J. Appl. Phys. 2008, 104, 093713.

    Article  Google Scholar 

  44. Xu, Y. N.; Ching, W. Y. Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B 1993, 48, 4335–4351.

    Article  CAS  Google Scholar 

  45. Freeman, C. L.; Claeyssens, F.; Allan, N. L.; Harding, J. H. Graphitic nanofilms as precursors to wurtzite films: Theory. Phys. Rev. Lett. 2006, 96, 066102.

    Article  Google Scholar 

  46. Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S. A.; Grazianetti, C.; Chiappe, D.; Molle, A.; Fanciulli, M. et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Appl. Phys. Lett. 2013, 103, 251605.

    Article  Google Scholar 

  47. Kam, K. K.; Parkinson, B. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Chem. Phys. 1982, 86, 463–467.

    Article  CAS  Google Scholar 

  48. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinx, T. F. Atomically thin MoS2: A new direct-gap semiconductor Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  49. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  CAS  Google Scholar 

  50. Han, S. W.; Kwon, H.; Kim, S. K.; Ryu, S.; Yun, W. S.; Kim, D. H.; Hwang, J. H.; Kang, J.-S.; Baik, J.; Shin, H. J. et al. Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys. Rev. B 2011, 84, 045409.

    Article  Google Scholar 

  51. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    Article  CAS  Google Scholar 

  52. Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

    Article  CAS  Google Scholar 

  53. Lebegue, S.; Eriksson, O. Electronic structure of twodimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.

    Article  Google Scholar 

  54. Li, T. S.; Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 2007, 111, 16192–16196.

    Article  CAS  Google Scholar 

  55. Ataca, C.; Sahin, H.; Akturk, E.; Ciraci, S. Mechanical and electronic properties of MoS2 nanoribbons and their defects. J. Phys. Chem. C 2011, 115, 3934–3941.

    Article  CAS  Google Scholar 

  56. Langreth, D. C.; Dion, M.; Rydberg, H.; Schroeder, E.; Hyldgaard, P.; Lundqvis, B. I. Van der Waals density functional theory with applications. Int. J. Quant. Chem. 2005, 101, 599–610.

    Article  CAS  Google Scholar 

  57. Gao, N.; Li, J. C.; Jiang, Q. Tunable band gaps in silicene–MoS2 heterobilayers. Phys. Chem. Chem. Phys. 2014, 16, 11673–11678.

    Article  CAS  Google Scholar 

  58. Pflugradt, P.; Matthes, L.; Bechstedt, F. Silicene-derived phases on Ag(111) substrate versus coverage: Ab initio studies. Phys. Rev. B 2014, 89, 035403.

    Article  Google Scholar 

  59. Wilsonand, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.

    Article  Google Scholar 

  60. Böker, Th.; Severin, R.; Müller, A.; Janowitz, C.; Manzke, R.; Voβ, D.; Krüger, P.; Mazur, A.; Pollmann, J. Band structure of MoS2, MoSe2, and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 2001, 64, 235305.

    Article  Google Scholar 

  61. Cinquanta, E.; Scalise, E.; Chiappe, D.; Grazianetti, C.; van den Broek, B.; Houssam, M.; Fanciulli, M.; Molle, A. Getting through the nature of silicene: An sp2–sp3 two-dimensional silicon nanosheet. J. Phys. Chem. C 2013, 117, 16719–16724.

    Article  CAS  Google Scholar 

  62. Lew Yan Voon, L. C.; Sandberg, E.; Aga, R. S.; Farajian, A. A. Hydrogen compounds of group-IV nanosheets. Appl. Phys. Lett. 2010, 97, 163114.

    Article  Google Scholar 

  63. Houssa, M.; Scalise, E.; Sankaran, K.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 2011, 98, 223107.

    Article  Google Scholar 

  64. Quhe, R. H.; Fei, R. X.; Liu, Q. H.; Zheng, J. X.; Li, H.; Xu, C. Y.; Ni, Z. Y.; Wang, Y. Y.; Yu, D. P.; Gao, Z. X. et al. Tunable and sizable band gap in silicene by surface adsorption. Sci. Rep. 2012, 2, 853.

    Article  Google Scholar 

  65. Ding, Y.; Wang, Y. L. Electronic structures of silicene fluoride and hydride. Appl. Phys. Lett. 2012, 100, 083102.

    Article  Google Scholar 

  66. van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. First-principles electronic functionalization of silicene and germanene by adatom chemisorption. Appl. Surf. Sci. 2014, 291, 104–108.

    Article  Google Scholar 

  67. Kaloni, T. P.; Singh, N.; Schwingenschlögl, U. Prediction of a quantum anomalous Hall state in Co-decorated silicone. Phys. Rev. B 2014, 89, 035409.

    Article  Google Scholar 

  68. Li, S. S.; Zhang, C. W.; Yan, S. S.; Hu, S. J.; Ji, W. X.; Wang, P. J.; Li, P. Novel band structures in silicene on monolayer zinc sulfide substrate. J. Phys.: Condens. Matter 2014, 26, 395003.

    Google Scholar 

  69. Weber, M. J. Handbook of Laser Science and Technology; CRC Press: Boca Raton, 1986.

    Google Scholar 

  70. Northrup, J. E.; Neugebauer, J. Theory of GaN(\(10\bar 10\)) and (\(11\bar 20\)) surfaces. Phys. Rev. B 1996, 53, R10477.

    Article  CAS  Google Scholar 

  71. Filippetti, A.; Fiorentini, V.; Cappellini, G.; Bosin, A. Anomalous relaxations and chemical trends at III-V semiconductor nitride nonpolar surfaces. Phys. Rev. B 1999, 59, 8026–8031.

    Article  CAS  Google Scholar 

  72. Zhang, X. J.; Zhang, H. Y.; He, T.; Zhao, M. W. Sizedependent structural and electronic properties of ZnS nanofilms: An ab initio study. J. Appl. Phys. 2010, 108, 064317.

    Article  Google Scholar 

  73. Wander, A.; Schedin, F.; Steadman, P.; Norris, A.; McGrath, R.; Turner, T. S.; Thornton, G.; Harrison, N. M. Stability of polar oxide surfaces. Phys. Rev. Lett. 2001, 86, 3811–3814.

    Article  CAS  Google Scholar 

  74. Meyer B.; Marx, D. Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 2003, 67, 035403.

    Article  Google Scholar 

  75. Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. (Invited) theoretical study of silicene and germanene. ECS Trans. 2013, 53, 51–62.

    Article  Google Scholar 

  76. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.

    Google Scholar 

  77. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  78. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the European Project 2D-NANOLATTICES, within the Future and Emerging Technologies (FET) program of the European Commission, under the FET-grant number 270749, as well as the KU Leuven Research Funds, project GOA/13/011. We are grateful to A. Molle (MDM Laboratory), A. Dimoulas (NCSR Demokritos) and G. Pourtois (imec) for their valuable contributions to this work and for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emilio Scalise or Michel Houssa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scalise, E., Iordanidou, K., Afanas’ev, V.V. et al. Silicene on non-metallic substrates: Recent theoretical and experimental advances. Nano Res. 11, 1169–1182 (2018). https://doi.org/10.1007/s12274-017-1777-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1777-y

Keywords

Navigation