Skip to main content
Log in

Predicting 2D silicon allotropes on SnS2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A first principles study on the stability and structural and electronic properties of two-dimensional silicon allotropes on a semiconducting layered metal-chalcogenide compound, namely SnS2, is performed. The interactions between the two-dimensional silicon layer, commonly known as silicene, and the layered SnS2 template are investigated by analyzing different configurations of silicene. The calculated thermodynamic phase diagram suggests that the most stable configuration of silicene on SnS2 belongs to a family of structures with Si atoms placed on three different planes; so-called dumbbell silicene. This particular dumbbell silicene structure preserves its atomic configuration on SnS2 even at a temperature of 500 K or as a “flake” layer (i.e., a silicene cluster terminated by H atoms), thanks to the weak interactions between the silicene and the SnS2 layers. Remarkably, an electric field can be used to tune the band gap of the silicene layer on SnS2, eventually changing its electronic behavior from semiconducting to (semi)metallic. The stability of silicene on SnS2 is very promising for the integration of silicene onto semiconducting or insulating substrates. The tunable electronic behavior of the silicene/SnS2 van der Walls heterostructure is very important not only for its use in future nanoelectronic devices, but also as a successful approach to engineering the bang-gap of layered SnS2, paving the way for the use of this layered compound in energy harvesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takeda, K.; Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 1994, 50, 14916–14922.

    Article  Google Scholar 

  2. Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

    Article  Google Scholar 

  3. Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231.

    Article  Google Scholar 

  4. Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y.G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. H. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 2012, 12, 3507–3511.

    Article  Google Scholar 

  5. Chiappe, D.; Grazianetti, C.; Tallarida, G.; Fanciulli, M.; Molle, A. Local electronic properties of corrugated silicene phases. Adv. Mater. 2012, 24, 5088–5093.

    Article  Google Scholar 

  6. Enriquez, H.; Vizzini, S.; Kara, A.; Lalmi, B.; Oughaddou, H. Silicene structures on silver surfaces. J. Phys.: Condens. Matter 2012, 24, 314211.

    Google Scholar 

  7. Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Tsipas, P.; Dimoulas, A. Evidence for hybrid surface metallic band in (4×4) silicene on Ag(111). Appl. Phys. Lett. 2013, 103, 231604.

    Article  Google Scholar 

  8. Moras, P.; Mentes, T. O.; Sheverdyaeva, P. M.; Locatelli, A.; Carbone, C. Coexistence of multiple silicene phases in silicon grown on Ag(111). J. Phys.: Condens. Matter 2014, 26, 185001.

    Google Scholar 

  9. Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501.

    Article  Google Scholar 

  10. Lee, C. C.; Fleurence, A.; Yamada-Takamura, Y.; Ozaki, T.; Friedlein, R. Band structure of silicene on zirconium diboride (0001) thin-film surface: Convergence of experiment and calculations in the one-Si-atom Brillouin zone. Phys. Rev. B 2014, 90, 075422.

    Article  Google Scholar 

  11. Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685–690.

    Article  Google Scholar 

  12. Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Twodimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 2014, 26, 2096–2101.

    Article  Google Scholar 

  13. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  Google Scholar 

  14. Wang, Y.; Ding, Y. L. Electronic structures of silicene/GaS heterosheets. Appl. Phys. Lett. 2013, 103, 043114.

    Article  Google Scholar 

  15. Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A. Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S, Se, Te) chalchogenide templates. 2D Mater. 2014, 1, 011010.

    Article  Google Scholar 

  16. Li, L. Y.; Zhao, M. W. Structures, energetics, and electronic properties of multifarious stacking patterns for high-buckled and low-buckled silicene on the MoS2 substrate. J. Phys. Chem. C 2014, 118, 19129–19138.

    Article  Google Scholar 

  17. Gao, N.; Li, J. C.; Jiang, Q. Tunable band gaps in silicene–MoS2 heterobilayers. Phys. Chem. Chem. Phys. 2014, 16, 11673–11678.

    Article  Google Scholar 

  18. Cahangirov, S.; Topsakal, M.; Aktü rk, E.; Sahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

    Article  Google Scholar 

  19. Houssa, M.; Pourtois, G.; Afanas’ ev, V. V.; Stesmans, A. Can silicon behave like graphene? A first-principles study. Appl. Phys. Lett. 2010, 97, 112106.

    Article  Google Scholar 

  20. Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. Phys. Chem. Chem. Phys. 2013, 15, 3702–3705.

    Article  Google Scholar 

  21. Madelung, O.; Rössler, U.; Schulz, M. Non-Tetrahedrally Bonded Elements and Binary Compounds I; Springer: Berlin Heidelberg, 1998.

  22. Julien, C.; Eddrief, M.; Samaras, I.; Balkanski, M. Optical and electrical characterizations of SnSe, SnS2 and SnSe2 single crystals. Mater. Sci. Eng. B 1992, 15, 70–72.

    Article  Google Scholar 

  23. Scalise, E.; Houssa, M.; Pourtois, G.; van den Broek, B.; Afanas’ev, V.; Stesmans, A. Vibrational properties of silicene and germanene. Nano Res. 2013, 6, 19–28.

    Article  Google Scholar 

  24. Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A. et al. Tin disulfide-an emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743–10755.

    Article  Google Scholar 

  25. Su, G. X.; Hadjiev, V. G.; Loya, P. E.; Zhang, J.; Lei, S. D.; Maharjan, S.; Dong, P.; Ajayan, P. M.; Lou, J.; Peng, H. B. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015, 15, 506–513.

    Article  Google Scholar 

  26. Song, H. S.; Li, S. L.; Gao, L.; Xu, Y.; Ueno, K.; Tang, J.; Cheng, Y. B.; Tsukagoshi, K. High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. Nanoscale 2013, 5, 9666–9670.

    Article  Google Scholar 

  27. Seo, J. W.; Jang, J. T.; Park, S. W.; Kim, C.; Park, B.; Cheon, J. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv. Mater. 2008, 20, 4269–4273.

    Article  Google Scholar 

  28. Xia, J.; Zhu, D. D.; Wang, L.; Huang, B.; Huang, X.; Meng, X.-M. Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors. Adv. Funct. Mater. 2015, 25, 4255–4261.

    Article  Google Scholar 

  29. Yang, Y.-B.; Dash, J. K.; Littlejohn, A. J.; Xiang, Y.; Wang, Y.; Shi, J.; Zhang, L. H.; Kisslinger, K.; Lu, T.-M.; Wang, G.-C. Large single crystal SnS2 flakes synthesized from coevaporation of Sn and S. Cryst. Growth Des. 2016, 16, 961–973.

    Article  Google Scholar 

  30. Schlafa, R.; Armstrong, N. R.; Parkinson, B. A.; Pettenkofer, C.; Jaegermann, W. Van der Waals epitaxy of the layered semiconductors SnSe2 and SnS2: Morphology and growth modes. Surf. Sci. 1997, 385, 1–14.

    Article  Google Scholar 

  31. Liu, Y. C.; Kang, H. Y.; Jiao, L. F.; Chen, C. C.; Cao, K. Z.; Wang, Y. J.; Yuan, H. T. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 2015, 7, 1325–1332.

    Article  Google Scholar 

  32. Bialoglowski, M.; Jastrzebski, C.; Podsiadlo, S.; Jastrzebski, D. J.; Gajda, R.; Gebicki, W.; Wrzosek, P. A.; Wozniak, K. Synthesis of tin disulfide single crystals for nano-layer exfoliation. Cryst. Res. Technol. 2015, 50, 695–699.

    Article  Google Scholar 

  33. Huang, Y. C.; Chen, X.; Zhou, D. M.; Liu, H.; Wang, C.; Du, J. Y.; Ning, L. X.; Wang, S. F. Stabilities, Electronic and optical properties of SnSe2(1–x)S2x alloys: A first-principles study. J. Phys. Chem. C 2016, 120, 5839–5847.

    Article  Google Scholar 

  34. Cahangirov, S.; Özçelik, V. O.; Xian, L.; Avila, J.; Cho, S.; Asensio, M. C.; Ciraci, S.; Rubio, A. Atomic structure of the 33 phase of silicene on Ag(111). Phys. Rev. B 2014, 90, 035448.

    Article  Google Scholar 

  35. Zhang, T.; Zeng, Z. Y.; Cheng, Y.; Chen, X. R.; Cai, L. C. Dumbbell silicene: A strain-induced room temperature quantum spin Hall insulator. New J. Phys. 2016, 18, 043001.

    Article  Google Scholar 

  36. De Padova, P.; Vogt, P.; Resta, A.; Avila, J.; Razado-Colambo, I.; Quaresima, C.; Ottaviani, C.; Olivieri, B.; Bruhn, T.; Hirahara, T.et al. Evidence of Dirac fermions in multilayer silicene. Appl. Phys. Lett. 2013, 102, 163106.

    Article  Google Scholar 

  37. Vogt, P.; Capiod, P.; Berthe, M.; Resta, A.; De Padova, P.; Bruhn, T.; Le Lay, G.; Grandidier, B. Synthesis and electrical conductivity of multilayer silicene. Appl. Phys. Lett. 2014, 104, 021602.

    Article  Google Scholar 

  38. Langreth, D. C.; Dion, M.; Rydberg, H.; Schröder, E.; Hyldgaard, P.; Lundqvis, B. I. Van der Waals density functional theory with applications. Int. J. Quant. Chem. 2005, 101, 599–610.

    Article  Google Scholar 

  39. Yuan, Y. K.; Quhe, R.; Zheng, J. X.; Wang, Y. Y.; Ni, Z. Y.; Shi, J. J.; Lu, J. Strong band hybridization between silicene and Ag(111) substrate. Phys. E 2014, 58, 38–42.

    Article  Google Scholar 

  40. Cahangirov, S.; Audiffred, M.; Tang, P. Z.; Iacomino, A.; Duan, W. H.; Merino, G.; Rubio, A. Electronic structure of silicene on Ag(111): Strong hybridization effects. Phys. Rev. B 2013, 88, 035432.

    Article  Google Scholar 

  41. Pflugradt, P.; Matthes, L.; Bechstedt, F. Silicene-derived phases on Ag(111) substrate versus coverage: Ab initio studies. Phys. Rev. B 2014, 89, 035403.

    Article  Google Scholar 

  42. Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.

    Article  Google Scholar 

  43. Li, S. S.; Zhang, C. W.; Yan, S. S.; Hu, S. J.; Ji, W. X.; Wang, P. J.; Li, P. Novel band structures in silicene on monolayer zinc sulfide substrate. J. Phys.: Condens. Matter 2014, 26, 395003.

    Google Scholar 

  44. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207.

    Article  Google Scholar 

  45. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906.

    Google Scholar 

  46. Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.

    Article  Google Scholar 

  47. Hummer, K.; Harl, J.; Kresse, G. Heyd-Scuseria-Ernzerhof hybrid functional for calculating the lattice dynamics of semiconductors. Phys. Rev. B 2009, 80, 115205.

    Article  Google Scholar 

  48. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.

    Google Scholar 

  49. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  50. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  Google Scholar 

  51. Medeiros, P. V. C.; Tsirkin, S. S.; Stafström, S.; Björk, J. Unfolding spinor wave functions and expectation values of general operators: Introducing the unfolding-density operator. Phys. Rev. B 2015, 91, 041116(R).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Scalise.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scalise, E., Houssa, M. Predicting 2D silicon allotropes on SnS2 . Nano Res. 10, 1697–1709 (2017). https://doi.org/10.1007/s12274-016-1409-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1409-y

Keywords

Navigation