Skip to main content
Log in

Formation of plasmon quenching dips greatly enhances 1O2 generation in a chlorin e6–gold nanorod coupled system

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT), as a noninvasive therapeutic method, has been actively explored recently for cancer treatment. However, owing to the weak absorption in the optically transparent windows of biological tissues, most commercial photosensitizers (PSs) exhibit low singlet oxygen (1O2) quantum yields when excited by light within this window. Finding the best way to boost 1O2 production for clinical applications using light sources within this window is, thus, a great challenge. Herein, we tackle this problem using plasmon resonance energy transfer (PRET) from plasmonic nanoparticles (NPs) to PSs and demonstrate that the formation of plasmon quenching dips is an effective way to enhance 1O2 generation. The combination of the photosensitizer chlorin e6 (Ce6) and gold nanorods (AuNR) was employed as a model system. We observed a clear quenching dip in the longitudinal surface plasmon resonance (LSPR) band of the AuNRs when the LSPR band overlaps with the Q band of Ce6 and the spacing between Ce6 and the rods is within the acting distance of PRET. Upon irradiation with 660 nm continuous-wave laser light, we obtained a seven-fold enhancement in the 1O2 signal intensity compared with that of a non-PRET sample, as determined using the 1O2 electron spin resonance probe 2,2,6,6-tetramethyl-4-piperidine (TEMP). Furthermore, we demonstrated that the PRET effect is more efficient in enhancing 1O2 yield than the often-employed local field enhancement effect. The effectiveness of PRET is further extended to the in vitro level. Considering the flexibility in manipulating the localized SPR properties of plasmonic nanoparticles/nanostructures, our findings suggest that PRET-based strategies may be a general way to overcome the deficiency of most commercial organic PSs in biological optically transparent windows and promote their applications in clinical tumor treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeRosa, M. C.; Crutchley, R. J. Photosensitized singlet oxygen and its applications. Chem. Rev. 2002, 233–234, 351–371.

    Google Scholar 

  2. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

    Article  Google Scholar 

  3. Alberti, M. N.; Orfanopoulos, M. Stereoelectronic and solvent effects on the allylic oxyfunctionalization of alkenes with singlet oxygen. Tetrahedron 2006, 62, 10660–10675.

    Article  Google Scholar 

  4. Ogilby, P. R. Singlet oxygen: There is indeed something new under the sun. Chem. Soc. Rev. 2010, 39, 3181–3209.

    Article  Google Scholar 

  5. Schweitzer, C.; Schmidt, R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 2003, 103, 1685–1758.

    Article  Google Scholar 

  6. Kuimova, M. K.; Botchway, S. W.; Parker, A. W.; Balaz, M.; Collins, H. A.; Anderson, H. L.; Suhling, K.; Ogilby, P. R. Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat. Chem. 2009, 1, 69–73.

    Article  Google Scholar 

  7. Castano, A. P.; Mroz, P.; Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006, 6, 535–545.

    Article  Google Scholar 

  8. Allison, R. R.; Sibata, C. H. Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagn. Photodyn. Ther. 2010, 7, 61–75.

    Article  Google Scholar 

  9. Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795–2838.

    Article  Google Scholar 

  10. Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA-Cancer J. Clin. 2011, 61, 250–281.

    Article  Google Scholar 

  11. Allison, R. R.; Downie, G. H.; Cuenca, R.; Hu, X. H.; Childs, C. J.; Sibata, C. H. Photosensitizers in clinical PDT. Photodiagn. Photodyn. Ther. 2004, 1, 27–42.

    Article  Google Scholar 

  12. Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042.

    Article  Google Scholar 

  13. Paszko, E.; Ehrhardt, C.; Senge, M.O.; Kelleher, D. P.; Reynolds, J. V. Nanodrug applications in photodynamic therapy. Photodiagn. Photodyn. Ther. 2011, 8, 14–29.

    Article  Google Scholar 

  14. Bechet, D.; Couleaud, P.; Frochot, C.; Viriot, M. L.; Guillemin, F.; Barberi-Heyob, M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008, 26, 612–621.

    Article  Google Scholar 

  15. Rana, S.; Bajaj, A.; Mout, R.; Rotello, V. M. Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Delivery Rev. 2012, 64, 200–216.

    Article  Google Scholar 

  16. Gao, L.; Fei, J. B.; Zhao, J.; Li, H.; Cui, Y.; Li, J. B. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano. 2012, 6, 8030–8040.

    Article  Google Scholar 

  17. Wang, S. J.; Huang, P.; Nie, L. M.; Xing, R. J.; Liu, D. B.; Wang, Z.; Lin, J.; Chen, S. H.; Niu, G.; Lu, G. M. et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 2013, 25, 3055–3061.

    Article  Google Scholar 

  18. Lin, J.; Wang, S. J.; Huang, P.; Wang, Z.; Chen, S. H.; Niu, G.; Li, W. W.; He, J.; Cui, D. X.; Lu, G. M. et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 2013, 7, 5320–5329.

    Article  Google Scholar 

  19. Kreyling, W. G.; Abdelmonem, A. M.; Ali, Z.; Alves, F.; Geiser, M.; Haberl, N.; Hartmann, R.; Hirn, S.; de Aberasturi, D. J.; Kantner, K. et al. In vivo integrity of polymer-coated gold nanoparticles. Nat. Nanotechnol. 2015, 10, 619–623.

    Article  Google Scholar 

  20. Kuo, W. S.; Chang, C. N.; Chang, Y. T.; Yang, M. H.; Chien, Y. H.; Chen, S. J.; Yeh, C. S. Gold Nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Angew. Chem., Int. Ed. 2010, 49, 2711–2715.

    Article  Google Scholar 

  21. Jang, B.; Park, J. Y.; Tung, C. H.; Kim, I. H.; Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011, 5, 1086–1094.

    Article  Google Scholar 

  22. Zhang, Z. J.; Wang, J.; Nie, X.; Wen, T.; Ji, Y. L.; Wu, X. C.; Zhao, Y. L.; Chen, C. Y. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc. 2014, 136, 7317–7326.

    Article  Google Scholar 

  23. Wang, J.; You, M. X.; Zhu, G. Z.; Shukoor, M. I.; Chen, Z.; Zhao, Z. L.; Altman, M. B.; Yuan, Q.; Zhu, Z.; Chen, Y. et al. Photosensitizer–gold nanorod composite for targeted multimodal therapy. Small 2013, 9, 3678–3684.

    Article  Google Scholar 

  24. Wang, N. N.; Zhao, Z. L.; Lv, Y. F.; Fan, H. H.; Bai, H. R.; Meng, H. M.; Long, Y. Q.; Fu, T.; Zhang, X. B.; Tan, W. H. Gold nanorod–photosensitizer conjugate with extracellular ph-driven tumor targeting ability for photothermal/ photodynamic therapy. Nano Res. 2014, 7, 1291–1301.

    Article  Google Scholar 

  25. Xu, Y. K.; He, R. Y.; Lin, D. D.; Ji, M. B.; Chen, J. Y. Laser beam controlled drug release from Ce6–gold nanorod composites in living cells: A FLIM study. Nanoscale 2015, 7, 2433–2441.

    Article  Google Scholar 

  26. Li, Y. Y.; Wen, T.; Zhao, R. F.; Liu, X. X.; Ji, T. J.; Wang, H.; Shi, X. W.; Shi, J.; Wei, J. Y.; Zhao, Y. L. et al. Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano 2014, 8, 11529–11542.

    Article  Google Scholar 

  27. Lu, K. D.; He, C. B.; Lin, W. B. Nanoscale metal−organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 2014, 136, 16712–16715.

    Article  Google Scholar 

  28. Ding, X. S.; Han, B. H. Metallophthalocyanine-Based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation. Angew. Chem., Int. Ed. 2015, 54, 6536–6539.

    Article  Google Scholar 

  29. Lu, K. D.; He, C. B.; Lin, W. B. A chlorin-based nanoscale metal−organic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc. 2015, 137, 7600–7603.

    Article  Google Scholar 

  30. Park, J.; Jiang, Q.; Feng, D. W.; Mao, L. Q.; Zhou, H. C. Size-controlled synthesis of porphyrinic metal−organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 3518–3525.

    Article  Google Scholar 

  31. Ni, W. H.; Ambjörnsson, T.; Apell, S. P.; Chen, H. J.; Wang, J. F. Observing plasmonic–molecular resonance coupling on single gold nanorods. Nano Lett. 2010, 10, 77–84.

    Article  Google Scholar 

  32. Chen, H. J.; Ming, T.; Zhao, L.; Wang, F.; Sun, L. D.; Wang, J. F.; Yan, C. H. Plasmon–molecule interactions. Nanotoday 2010, 5, 494–505.

    Article  Google Scholar 

  33. DeLacy, B. G.; Miller, O. D.; Hsu, C. W.; Zander, Z.; Lacey, S.; Yagloski, R.; Fountain, A, W.; Valdes, E.; Anquillare, E.; Soljačić, M. et al. Coherent plasmon–exciton coupling in silver platelet-J-aggregate nanocomposites. Nano Lett. 2015, 15, 2588–2593.

    Article  Google Scholar 

  34. Chen, H. J.; Shao, L.; Woo, K. C.; Wang, J. F.; Lin, H. Q. Plasmonic−molecular resonance coupling: Plasmonic splitting versus energy transfer. J. Phys. Chem. C 2012, 116, 14088–14095.

    Article  Google Scholar 

  35. Choi, Y.; Kang, T.; Lee, L. P. Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells. Nano Lett. 2009, 9, 85–90.

    Article  Google Scholar 

  36. Qu, W. G.; Deng, B.; Zhong, S. L.; Shi, H. Y.; Wang, S. S.; Xu, A. W. Plasmonic resonance energy transfer-based nanospectroscopy for sensitive and selective detection of 2,4,6-trinitrotoluene (TNT). Chem. Commun. 2011, 47, 1237–1239.

    Article  Google Scholar 

  37. Li, J. T.; Cushing, S. K.; Meng, F. K.; Senty, T. R.; Bristow, A. D.; Wu, N. Q. Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photonics 2015, 9, 601–607.

    Article  Google Scholar 

  38. Nan, F.; Ding, S. J.; Ma, L.; Cheng, Z. Q.; Zhong, Y. T.; Zhang, Y. F.; Qiu, Y. H.; Li, X. G.; Zhou, L.; Wang, Q. Q. Plasmon resonance energy transfer and plexcitonic solar cell. Nanoscale 2016, 8, 15071–15078.

    Article  Google Scholar 

  39. Cao, Y.; Xie, T.; Qian, R. C.; Long, Y. T. Plasmon resonance energy transfer: Coupling between chromophore molecules and metallic nanoparticles. Small 2016, 13, 1601955.

    Article  Google Scholar 

  40. Hu, Z. J.; Hou, S.; Ji, Y. L.; Wen, T.; Liu, W. Q.; Zhang, H.; Shi, X. W.; Yan, J.; Wu, X. C. Fast characterization of gold nanorods ensemble by correlating its structure with optical extinction spectral features. AIP Adv. 2014, 4, 117137.

    Article  Google Scholar 

  41. Park, K.; Drummy, L. F.; Vaia, R. A. Ag Shell morphology on Au nanorod core: role of Ag precursor complex. J. Mater. Chem. 2011, 21, 15608–15618.

    Article  Google Scholar 

  42. Jadhao, M.; Ahirkar, P.; Kumar, H.; Joshi, R.; Meitei, O. R.; Ghosh, S. K. Surfactant induced aggregation-disaggregation of photodynamic active chlorin e6 and its relevant interaction with DNA alkylating Quinone in a biomimic micellar microenvironment. RSC Adv. 2015, 5, 81449–81460.

    Article  Google Scholar 

  43. Sen, T.; Patra, A. Resonance energy transfer from Rhodamine 6G to gold nanoparticles by steady-state and time-resolved spectroscopy. J. Phys. Chem. C 2008, 112, 3216–3222.

    Article  Google Scholar 

  44. Singh, M. P.; Strouse, G. F. Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle. J. Am. Chem. Soc. 2010, 132, 9383–9391.

    Article  Google Scholar 

  45. Pacioni, N. L.; González-Béjar, M; Alarcón, E.; McGilvray, K. L.; Scaiano, J. C. Surface Plasmons control the dynamics of excited triplet states in the presence of gold nanoparticles. J. Am. Chem. Soc. 2010, 132, 6298–6299.

    Article  Google Scholar 

  46. Gao, M. X.; Zou, H. Y.; Gao, P. F.; Liu, Y.; Li, N.; Li, Y. F.; Huang, C. Z. Insight into a reversible energy transfer system. Nanoscale 2016, 8, 16236–16242.

    Article  Google Scholar 

  47. Planas, O.; Macia, N.; Agut, M.; Nonell, S.; Heyne, B. Distance-dependent plasmon-enhanced singlet oxygen production and emission for bacterial inactivation. J. Am. Chem. Soc. 2016, 138, 2762–2768.

    Article  Google Scholar 

  48. Liu, G. L.; Long, Y. T.; Choi, Y.; Kang, T.; Lee, L. P. Quantized Plasmon quenching dips nanospectroscopy via Plasmon resonance energy transfer. Nat. Methods 2007, 4, 1015–1017.

    Article  Google Scholar 

  49. Wen, T.; Zhang, H.; Chong, Y.; Wamer, W. G.; Yin, J. J.; Wu, X. C. Probing hydroxyl radical generation from H2O2 upon Plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen-mediated activation. Nano Res. 2016, 9, 1663–1673.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (Nos. 2016YFA0200903 and 2011CB932802), and the National Natural Science Foundation of China (Nos. 91127013 and 21173056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, H., Fan, H. et al. Formation of plasmon quenching dips greatly enhances 1O2 generation in a chlorin e6–gold nanorod coupled system. Nano Res. 11, 1456–1469 (2018). https://doi.org/10.1007/s12274-017-1762-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1762-5

Keywords

Navigation